Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22050247-8    https://doi.org/10.11896/cldb.22050247
  金属与金属基复合材料 |
导电炭黑和热处理对Al-Bi复合材料产氢性能的影响
陈卓1, 谢志雄1,*, 肖述广1, 陈琪1, 董仕节1,2
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068
2 武汉轻工大学机械工程学院,武汉 430023
Effect of Conductive Carbon Black and Heat Treatment on Hydrogen Production Performance of Al-Bi Composites
CHEN Zhuo1, XIE Zhixiong1,*, XIAO Shuguang1, CHEN Qi1, DONG Shijie1,2
1 Hubei Key Laboratory of Green Light Industrial Materials, Hubei University of Technology, Wuhan 430068, China
2 College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China
下载:  全 文 ( PDF ) ( 18424KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用机械球磨法制备Al-Bi-CB复合材料,研究了导电炭黑和热处理对Al-Bi复合材料产氢性能的影响,用扫描电子显微镜和X射线衍射仪分析了复合材料的组织形貌和物相结构。实验结果表明,当导电炭黑含量为5%时,复合材料的产氢性能最佳。在30 ℃时,1 g Al-3%Bi-5%CB复合材料5 min产生865 mL氢气,最大产氢速率达到107.15 mL·s-1。导电炭黑细化铝粉体颗粒、提高Al-Bi复合材料的导电性以及与水接触时导电炭黑能迅速从复合材料表面剥落是其提高Al-Bi复合材料产氢量和产氢速率的主要原因。球磨Al-Bi-CB粉体材料经热处理后,在30 min内,1 g Al-3%Bi-1%CB材料的最大产氢量从220 mL增至840 mL,热处理后嵌入Al中的Bi重新熔化与再结晶而覆盖在Al表面形成活性位点是提高复合材料产氢性能的主要原因。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈卓
谢志雄
肖述广
陈琪
董仕节
关键词:  Al-Bi复合材料  导电炭黑  气氛热处理  产氢性能  产氢机理    
Abstract: Al-Bi-CB composites were designed by mechanical ball milling and heat treatment, the influence of conductive carbon black and heat teatment on hydrogen generation performance of Al-Bi-CB composites was studied. The morphology and structures of the composites were investigated by sanning electron microscope (SEM) and X-ray diffraction (XRD). The experiment results indicated that the composites acquired the best hydrogen production performance when the content of conductive carbon black was 5%. At the reaction temperature of 30 ℃, 1 g Al-3%Bi-5%CB composites for 5 min resulted in a hydrogen productin amount of 865 mL and the maximum hydrogen production rate was 107.15 mL·s-1. The main reasons for increased the hydrogen production and hydrogen production rate of Al-Bi composites by conductive carbon black are refined the powder particles, improved the electrical conductivity of Al-Bi composites and quickly exfoliated from the surface of the composites when in contact with water. After heat treatment of ball milled powder, the maximum hydrogen production of Al-3%Bi-1%CB increased from 220 mL·g-1 to 840 mL·g-1 in 30 min. After heat treatment, Bi which embedded in Al remelted, recrystallized and form active sites on Al surface are the main reasons for improving hydrogen production performance of the composites.
Key words:  Al-Bi composite    conductive carbon black    atmosphere heat treatment    hydrogen production performance    hydrogen production mechanism
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TK91  
基金资助: 国家自然科学基金(51771071)
通讯作者:  *谢志雄,工学博士,湖北工业大学讲师、硕士研究生导师,材料成型及控制工程系副主任兼党支部书记,2012 年6 月于上海交通大学材料加工工程专业获工学博士学位。发表论文20 余篇,其中SCI/EI 收录论文15 余篇,主持和参与湖北省自然科学基金项目、国家自然科学基金项目,主要从事高强高导铜合金的制备、组织、性能和强化机理,产氢铝合金的制备,产氢机理,超薄壁钛管、不锈钢管、铝合金管的高频感应焊接研究。xzx@hbut.edu.cn   
作者简介:  陈卓,湖北工业大学材料与化学工程学院硕士研究生,在谢志雄老师的指导下进行研究,目前主要研究领域为铝基复合材料的产氢性能。
引用本文:    
陈卓, 谢志雄, 肖述广, 陈琪, 董仕节. 导电炭黑和热处理对Al-Bi复合材料产氢性能的影响[J]. 材料导报, 2023, 37(20): 22050247-8.
CHEN Zhuo, XIE Zhixiong, XIAO Shuguang, CHEN Qi, DONG Shijie. Effect of Conductive Carbon Black and Heat Treatment on Hydrogen Production Performance of Al-Bi Composites. Materials Reports, 2023, 37(20): 22050247-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050247  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22050247
1 Harvey N. IEEE Engineering Management Review, 2020, 48(2), 23.
2 Woerpel H. The benefits and challenges of a new energy future, USA, 2020.
3 Hwang J H, Lee W H. International Journal of Hydrogen Energy, 2021, 46(42), 21812.
4 Lay C H, Vo T P, Lin P Y, et al. International Journal of Hydrogen Energy, 2019, 44(28), 14351.
5 Bareschino P, Mancusi E, Tregambi C, et al. Energy, 2021, 230, 120863.
6 Das S, Dutta S, Tama A M, et al. Materials Science & Engineering B, 2021, 271, 115295.
7 Chen C, Guan X, Wang H, et al. International Journal of Hydrogen Energy, 2020, 45(24), 13139.
8 Guan X, Luo P, Dong S J. International Journal of Modern Physics B, 2017, 31(16-19), 1744019.
9 Guan X, Zhou Z, Luo P, et al. Journal of Alloys and Compounds, 2019, 796, 210.
10 Kumar D, Muthukumar K. Journal of Alloys and Compounds, 2020, 835, 155189.
11 López Miranda J L, Rosas G. International Journal of Hydrogen Energy, 2016, 41(6), 4054.
12 Shmelev V, Nikolaev V, Lee J H, et al. International Journal of Hydrogen Energy, 2016, 41(38), 16664.
13 Yang B C, Chai Y J, Yang F L, et al. International Journal of Energy Research, 2018, 42(4), 1594.
14 Konno C, Cruz C, Costa T, et al. International Journal of Hydrogen Energy, 2021, 46(24), 12654.
15 Amberchan G, Lopez I, Ehlke B, et al. ACS Applied Nano Materials, 2022, 5(2), 2636.
16 Davies J, du Preez S P, Bessarabov D G. Materials, 2022, 15(3), 1197.
17 Huang H. Ultrasonics Sonochemistry, 2020, 65, 105064.
18 Wang H, Xie Z, Dong S, et al. Materials Reports, 2020, 34(4), 4062(in Chinese).
汪洪波, 谢志雄, 董仕节, 等. 材料导报, 2020, 34(4), 4062.
19 Sheng P, Zhang S, Guan C, et al. Energy Storage, 2021, 3(4), e241.
20 Liu Z, Xiao F, Tang W, et al. International Journal of Hydrogen Energy, 2022, 47(3), 1701.
21 Xu S, Liu J. Frontiers in Energy, 2019, 13(1), 27.
22 Kaya M F, Kahveci O, Erol H, et al. International Journal of Hydrogen Energy, 2021, 46(29), 15192.
23 Gao Z, Ji F, Cheng D, et al. Energies, 2021, 14(5), 1433.
24 Sheng P, Zhang S, Yang J, et al. International Journal of Energy Research, 2021, 45(6), 9627.
25 Fan M Q, Xu F, Sun L X. International Journal of Hydrogen Energy, 2006, 32(14), 2809.
26 Xiao F, Yang R, Li J. International Journal of Hydrogen Energy, 2020, 45(11), 6082.
27 Liao L, Guo X, Xu F, et al. Ceramics International, 2021, 47(20), 29064.
28 Xie Z, Dong S, Luo P, et al. Materials Transactions, 2017, 58(5), 724.
29 Chen C, Lan B, Liu K, et al. Materials Research Express, 2019, 6(4), 046532.
30 Fiala L, Petíková M, Lin W T, et al. Energies, 2019, 12(21), 4121.
31 Neffati R, Brokken Zijp J M C. Materials Research Express, 2019, 6(12), 125058.
32 Neffati R, Brokken Zijp J M C. Materials Chemistry and Physics, 2021, 260, 142177.
33 Chen C, Lan B, Liu K, et al. Journal of Alloys and Compounds, 2019, 808, 151733.
34 Wang T, Xu F, Sun L, et al. Journal of Alloys and Compounds, 2021, 860, 157925.
35 Su M, Hu H, Gan J, et al. Energy, 2021, 218, 119489.
36 Huang Z, Li J, Yao J, et al. Applied Physics A, 2017, 123(11), 1.
37 Zhou Y, Xia Z, Li Z, et al. Journal of Zhejiang University(Engineering Science), 2006(9), 1595(in Chinese).
周颖, 夏志平, 李宗全. 浙江大学学报(工学版), 2006(9), 1595.
38 Ding J, Wang H, Luo Y, et al. Catalysts, 2020, 10(4), 389.
39 Lihrmann J M. Journal of the European Ceramic Society, 2008, 28(3), 633.
40 Inoue H, Nakayama K, Ashitaka Z. U. S. patent application, US9608275. 2017.
41 Wu H C, Lin Y P, Lee E, et al. Materials Chemistry and Physics, 2009, 117(1), 294.
42 Xiao F, Guo Y, Li J, et al. Energy, 2018, 157, 608.
43 Guo X. Study on bismuth-based catalysis for hydrogen production from aluminum/water. Master’s Thesis, Guilin University of Electronic Technology, China, 2020(in Chinese).
郭晓磊. 铋基催化剂催化铝/水制氢的研究, 硕士学位论文, 桂林电子科技大学, 2020.
44 Du Preez S P, Bessarabov D G. International Journal of Electrochemical Science, 2017, 12(9), 8663.
45 Xiao F, Yang R, Li J. Energy, 2019, 170, 159.
[1] 汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
[2] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[3] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[4] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[5] 翟建明, 商学欣, 王汉奎, 徐彤, 于海洋, 孙永辉, 柳旺. 基于4130X材料的高压氢脆评价方法研究[J]. 材料导报, 2021, 35(z2): 437-442.
[6] 付文英, 司司, 魏永生, 刘妍, 陈佳琪, 韦露, 赵新生. 硼氢化钠循环再生工艺的研究进展[J]. 材料导报, 2021, 35(15): 15017-15025.
[7] 汪洪波, 谢志雄, 董仕节, 黄海军, 高海燕. AlTi5B催化富铝合金水解产氢反应——一种高效经济制备氢气的方法[J]. 材料导报, 2020, 34(4): 4062-4067.
[8] 翟建明, 徐彤, 王红霞, 马广青, 商学欣. 316L与16Mn材料抗高压氢脆性能研究[J]. 材料导报, 2019, 33(Z2): 497-500.
[9] 魏永生, 王茂森, 康健, 马瑞欣, 韦露, 李建伟, 赵新生. 电沉积法制备三维泡沫镍负载钴催化剂及其工艺条件优化[J]. 材料导报, 2018, 32(19): 3304-3308.
[10] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[11] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed