Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21120211-6    https://doi.org/10.11896/cldb.21120211
  无机非金属及其复合材料 |
粉体粒径对数字光处理3D打印金刚石复合材料性能的影响
杨温鑫, 孟晓燕*, 邓欣
广东工业大学机电工程学院,广州 510006
Effect of Powder Particle Size on the Properties of Diamond Composites Fabricated by Digital Light Processing 3D Printing
YANG Wenxin, MENG Xiaoyan*, DENG Xin
School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
下载:  全 文 ( PDF ) ( 6360KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于数字光处理(Digital light processing,DLP)3D打印技术的成型原理,系统探索了含不同粒径金刚石粉体的金刚石树脂浆料的流变性能、固化特性以及所制备的金刚石-树脂复合材料的力学性能。研究结果表明:增大粉体粒径可以降低颗粒的比表面积与表面能量,有效减小金刚石树脂浆料的粘度,在打印成型过程中有利于提高浆料的流动性;结合Beer-Lambert模型方程可知,在相同的曝光能量下,粉体粒径越大,对应金刚石浆料的固化深度越大,在打印过程中可以提供更高的层间结合强度,但是扩展固化宽度增大,导致成型精度降低。金刚石-树脂复合材料的力学性能测试结果表明增大粉体的粒径对复合材料的邵氏硬度没有显著的影响,但是有利于提高复合材料的抗弯强度和弹性模量。本研究通过光固化3D打印技术制备了含不同粒径金刚石粉体的金刚石-树脂复合材料,可为未来光固化树脂结合剂金刚石工具的成型制备提供实验基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨温鑫
孟晓燕
邓欣
关键词:  增材制造  数字光处理  金刚石-树脂复合材料  固化特性  力学性能    
Abstract: Based on the principle of digital light processing (DLP)3D printing technology, the rheological properties and curing characteristics of diamond-resin slurries with various diamond particle sizes were systematically investigated, as well as the mechanical properties of the diamond-resin composites prepared by DLP. The results show that increasing the particle size can reduce the specific surface area and surface energy, effectively reduce the viscosity of the diamond-resin slurry and improve the fluidity of the slurry during the DLP printing process. Combined with the Beer-Lambert model equation, it was found that, under the same exposure energy, slurry with larger diamond particle size possess a higher cure depth, which is beneficial to the interlayer bonding strength of the composites made therefrom. However, the excess cure width also increases with the particle sizes, leading to a decrease in printing accuracy. Results from the mechanical performance test of the diamond-resin composite indicate that increasing the particle size improves the shore hardness of the composite little, whereas it is beneficial to improve the fle-xural strength and elastic modulus of the composite. In this work, diamond-resin composites with different particle sizes of diamond powder were prepared via DLP 3D printing technology, providing an experimental reference for the fabrication of ultraviolet-curable resin-bonded diamond tools by stereolithography 3D printing in the future.
Key words:  additive manufacturing    digital light process (DLP)    diamond-resin composite    curing characteristic    mechanical property
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TB332  
基金资助: 广东省前沿与关键技术创新专项(2017B090911006);季华实验室项目(X190061UZ190);佛山市科技创新团队项目(FS0AA-KJ919-4402-0023)
通讯作者:  * 孟晓燕,广东工业大学博士后,2007年和2010年于北京化工大学分别获得学士和硕士学位,2013年于奥地利维也纳技术大学获得博士学位。2019年7月至今在广东工业大学进行博士后研究,主要从事光固化3D打印树脂体系开发、光固化树脂结合剂金刚石工具、金属及金属/陶瓷的增材制造研究。已发表学术论文近10篇,其中SCI/EI检索论文8篇;申请国家发明专利9项,其中2项已获授权。mengxy@gdut.edu.cn   
作者简介:  杨温鑫,2020年6月于广州城市理工学院获得工学学士学位。现为广东工业大学机电工程学院硕士研究生,在邓欣教授和孟晓燕博士的指导下进行光固化树脂金刚石工具的增材制造研究。
引用本文:    
杨温鑫, 孟晓燕, 邓欣. 粉体粒径对数字光处理3D打印金刚石复合材料性能的影响[J]. 材料导报, 2023, 37(12): 21120211-6.
YANG Wenxin, MENG Xiaoyan, DENG Xin. Effect of Powder Particle Size on the Properties of Diamond Composites Fabricated by Digital Light Processing 3D Printing. Materials Reports, 2023, 37(12): 21120211-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120211  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21120211
1 Tönshoff H K, Hillmann-apmann H, Asche J. Diamond and Related Materials, 2002, 11, 736.
2 Lavrinenko V I. Journal of Superhard Materials, 2018, 40, 348.
3 Deja M, Zielinski D, Kadir A Z A, et al. Materials (Basel), 2021, 14(5), 1318.
4 Duan W Y, Yin Y H, Xue Q H, et al. Bulletin of the Chinese Ceramic Society, 2015, 34(3), 808 (in Chinese).
段文远, 尹育航, 薛群虎, 等. 硅酸盐通报, 2015, 34(3), 808.
5 Gao C, Zhu F, Liu M Y, et al. Diamond and Abrasives Engineering, 2014, 34(1), 64 (in Chinese).
高翀, 朱峰, 刘明耀, 等. 金刚石与磨料磨具工程, 2014, 34(1), 64.
6 Peng W, Yao C Y, Lv X, et al. Key Engineering Materials, 2007, 329, 489.
7 Peng W, Liu F Q, Yao C Y. Advanced Materials Research, 2009, 832, 69.
8 Huang Q, Guo L, Marinescu I. Procedia Manufacturing, 2016, 5, 259.
9 Guo L, Huang Q, Marinescu I. Machining Science & Technology, 2017, 21, 223.
10 Quan H, Zhang T, Xu H, et al. Bioactive Materials, 2020, 5, 110.
11 Du Z J, Zhang F L, Xu Q S, et al. Ceramics International, 2019, 45, 20873.
12 Yang Z, Zhang M, Zhang Z, et al. Materials & Design, 2016, 104, 292.
13 Tian C, Li X, Chen Z, et al. Journal of Manufacturing Processes, 2020, 54, 38.
14 Tian C, Li X, Zhang S, et al. The International Journal of Advanced Manufacturing Technology, 2018, 100, 1451.
15 Qiu Y, Huang H, Xu X. The International Journal of Advanced Manufacturing Technology, 2018, 97, 3873.
16 Guo L, Huang Q, Marinescu I. Machining Science and Technology, 2017, 21, 223.
17 Zhang Y H, Huang J L, Song Y Y, et al. Diamond and Abrasive Engineering, 2021, 41(3), 8 (in Chinese).
张云鹤, 黄景銮, 宋运运, 等. 金刚石与磨料磨具工程, 2021, 41(3), 8.
18 Pagac M, Hajnys J, Ma Q P, et al. Polymers (Basel), 2021, 13(4), 598.
19 Chen Z, Li Z, Li J, et al. Journal of the European Ceramic Society, 2019, 39, 661.
20 Meng X Y, Yang W X, Deng X. Diamond and Related Materials, 2021, 120, 108715.
21 Wozniak M, Hazan Y D, Graule T, et al. Journal of the European Ceramic Society, 2011, 31, 2221.
22 Hingorani H, Zhang Y F, Zhang B, et al. International Journal of Smart & Nano Materials, 2019, 10, 225.
23 Chen Z, Li J, Liu C, et al. Ceramics International, 2019, 45, 11549.
24 Li X B, Zhong H, Zhang J X, et al. Journal of Inorganic Materials, 2019, 35, 231.
25 Konijn B J, Sanderink O B J, Kruyt N P. Powder Technology, 2014, 266, 61.
26 Ding G, He R, Zhang K, et al. Journal of the American Ceramic Society, 2019, 102, 7198.
27 Shan D M, Morris J, Plaisted T A, et al. Additive Manufacturing, 2021, 37, 101736.
28 Gentry S P, Halloran J W. Journal of the European Ceramic Society, 2015, 35, 1895.
29 Shen M, Zhao W, Xing B, et al. Ceramics International, 2020, 46, 24379.
30 Hu C, Chen Y, Yang T, et al. Ceramics International, 2021, 47, 12442.
31 Griffith M L, Halloran J W. Journal of Applied Physics, 1997, 81, 2538.
32 Zheng T, Wang W, Sun J, et al. Ceramics International, 2020, 46, 8682.
33 Sun C, Zhang X. Journal of Applied Physics, 2002, 92, 4796.
34 Yang N N, Liu H R, He L Q, et al. Journal of Longdong University, 2021, 32(5), 5 (in Chinese).
杨娜娜, 刘浩锐, 贺立群, 等. 陇东学院学报, 2021, 32(5), 5.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[3] 胡海波, 朱丽慧, 涂有旺, 段元满, 吴晓春, 顾炳福. 深冷处理工艺对M2高速钢显微组织与性能的影响[J]. 材料导报, 2023, 37(9): 21110028-6.
[4] 范雨生, 王茹. 纳米二氧化硅对丁苯共聚物/硫铝酸盐水泥复合砂浆物理力学性能的影响[J]. 材料导报, 2023, 37(9): 21080193-7.
[5] 陈磊, 徐荣正, 张利, 刘亚光, 李正坤, 张海峰, 张波. Zr基非晶夹层对Al/TA1异种金属电子束焊接头组织和性能的影响[J]. 材料导报, 2023, 37(8): 21100079-4.
[6] 彭乐, 郑志军. 激光选区熔化成形金属件的缺陷类型及表征方法概述[J]. 材料导报, 2023, 37(8): 21050053-7.
[7] 刘勇, 刘哲, 高广志, 李志勇, 马凤森. 基于纳米材料的微针阵列技术及其应用[J]. 材料导报, 2023, 37(8): 21110160-10.
[8] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[9] 程瑄, 桂晓露, 高古辉. 先进高强钢中的残余奥氏体:综述[J]. 材料导报, 2023, 37(7): 21070186-12.
[10] 乔丽学, 曹睿, 车洪艳, 李晌, 王铁军, 董浩, 王彩芹, 闫英杰. M390高碳马氏体不锈钢与304奥氏体不锈钢CMT对接焊连接机理[J]. 材料导报, 2023, 37(7): 21090294-6.
[11] 赵宇, 武喜凯, 朱伶俐, 杨章, 杨若凡, 管学茂. 碳纳米管对3D打印混凝土流变性能及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080137-6.
[12] 刘文憬, 李元东, 宋赵熙, 毕广利, 杨昊坤, 曹杨婧. Sr+Er复合变质对AlSi10MnMg合金微观组织、导热及力学性能的影响[J]. 材料导报, 2023, 37(6): 21090239-7.
[13] 高志玉, 樊献金, 高思达, 薛维华. 基于多模型机器学习的合金结构钢回火力学性能研究[J]. 材料导报, 2023, 37(6): 21090025-7.
[14] 王嘉乐, 左雨欣, 王越锋, 陈洪立, 刘宜胜, 胡雨倞, 于影, 左春柽. ZnO@PAN抗腐蚀薄膜的制备、力学性能分析及在铝-空气电池中的应用研究[J]. 材料导报, 2023, 37(6): 21080088-6.
[15] 谢吉林, 彭程, 谢菀新, 淦萌萌, 章文滔, 吴集思, 陈玉华. 铝/镁异种合金磁脉冲焊接接头组织与性能研究[J]. 材料导报, 2023, 37(5): 22010051-5.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed