Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21110105-22    https://doi.org/10.11896/cldb.21110105
  无机非金属及其复合材料 |
热电水泥基复合材料研究现状及展望
樊宇澄, 冯闯*
南京工业大学土木工程学院,南京 211816
Current Status and Prospect of the Research of Thermoelectric Cement-based Composites
FAN Yucheng, FENG Chuang*
College of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
下载:  全 文 ( PDF ) ( 29864KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统水泥基材料相比,掺入功能填料的水泥基复合材料不仅机械物理性能更强、耐久性更优,还能获得自主进行热能与电能互相转换的热电效应,在混凝土结构健康监测、城市建筑能量收集和融雪化冰等领域有广阔的应用前景。“双碳”目标提出后,热电水泥基复合材料(TECC)逐渐引起学术和工业界的广泛关注。这种可实现温差发电的水泥基复合材料既能降低建筑道路表面温度,缓解城市热岛效应,也有助于建立清洁灵活的城市能源结构,有望成为未来最具潜力的一种建筑材料。
近年来,世界各国研究人员尝试通过单掺碳纤维、碳纳米管、石墨/膨胀石墨、石墨烯及其氧化物、金属材料及其氧化物,复掺不同填料或改进制备工艺、完善分散方法等各种措施来提升TECC的热电性能,已取得不错的研究成果。研究发现,功能填料的种类及掺量是影响TECC性能的主要因素,其次是制备工艺和分散方法。目前以纳米金属氧化物填料所制备的热电水泥基材料Seebeck(塞贝克)系数增幅最大,比常规碳材料填料扩大了两个数量级,而纳米碳材料则在提高ZT值和电导率两方面更有优势。有研究者尝试将金属及其氧化物和碳材料混合掺入水泥基中取得了显著的增强效果,ZT值最高达到0.01(70 ℃),能量转化效率约为0.24%,足以为结构健康监测传感器等低功耗电子设备供能。然而,目前对于水泥基复合材料热电性能的研究与开发还处于摸索阶段,在实际工程中大规模应用还有许多问题亟待解决。如何在保证力学性能和耐久性的同时,增强水泥基复合材料的热电性能,提高其热电转换效率是目前热电水泥基复合材料领域的研究焦点。
本文阐述了具备热电效应的水泥基复合材料TECC的热电原理,分析了不同制备工艺及分散方法对TECC热电性能的影响,总结了热电性能表征和测量各项指标的常用方法,综述了常用功能填料对水泥基复合材料热电性能的影响,并展望了TECC在实际工程中的应用前景。本综述提出了热电水泥基进一步发展所面临的挑战和需要解决的问题,提出了今后的实验设计方案和理论模型研究方向,以期为制备分散性好、热电效应优异的热电水泥基复合材料提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
樊宇澄
冯闯
关键词:  水泥基复合材料  Seebeck系数  功能填料  温差电动势  热电效应    
Abstract: Compared with traditional cement-based materials, cement matrix reinforced by functional fillers can not only have improved mechanical and physical properties and durability, but also obtain thermoelectric attributes. Such attributes can convert thermal heat into electric energy and vice versa, which have demonstrated great potential in the application for structural health monitoring, energy collection and de-icing. With the initiate of carbon peaking and carbon neutrality goals, thermoelectric cement-based composites (TECCs) have been attracting extensive attention from academic and industrial communities. Such TECC materials can generate electricity while reducing temperature of structural surfaces and alleviating the so-called urban island effect. With the potential of improving the structure of energy supply in urban areas, TECC has been emerging as one of the most promising construction material candidates for future.
Recently, researchers have conducted extensive work to improve the thermoelectric performances of TECC through adding different fillers and employing various preparation processes and dispersion methods. The results obtained suggest that the type and the content of functional fillers are the major factors affecting the thermoelectric properties of TECC, followed by preparation process and dispersion method. Among the work conducted, the highest Seebeck coefficient of TECC was achieved by adding nano metal oxide into cement matrix. The value is two orders of magnitude larger when compared to nano carbon fillers. However, the TECC with nano carbon fillers has higher ZT value and electrical conductivity. Alternatively, some researchers dispersed metal fillers (including their oxides) and nano carbon filler into cement-based materials, and achieved significant improved thermoelectric performances with balance between Seebeck coefficient and ZT value. The highest ZT value is 0.01 at 70 ℃, and the energy conversion efficiency is 0.24%, which is sufficient to supply energy for low-power electronic devices such as structural health monitoring sensors. However, the current development of TECC is still facing great challenges and critical issues, particularly for large-scale application in practical engineering. Enhancing the thermoelectric properties and the performances of TECC while keeping its competitive mechanical properties has become the research focus recently.
In this paper, the principle of the thermoelectric effect of cement-based composites is presented. Then the effects of different preparation processes and dispersion methods on the thermoelectric properties of TECC are discussed. The methods for characterizing and measuring the thermoelectric properties are summarized. The effects of various functional fillers on the thermoelectric properties of cement-based composites are elaborated, and the potential application of TECC in practical engineering is envisaged. This review also proposes some challenges and problems to be solved for further development of thermoelectric cement-based materials. Moreover, the paper proposes some directions for theoretical modelling and experimental work, in order to provide guidelines for developing TECC with good dispersion of functional fillers and excellent thermoelectric properties.
Key words:  cement-based composites    Seebeck coefficient    functional filler    thermal electromotive force    thermoelectric effect
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TU525  
基金资助: 国家海外高层次人才青年项目;江苏省双创计划
通讯作者:  *冯闯,南京工业大学土木工程学院教授、博士研究生导师。2014年获得西安大略大学(加拿大)机械与材料工程博士学位。2015年至2019年于皇家墨尔本理工大学工作。2019年入选国家海外高层次人才青年项目,回国入职南京工业大学土木工程学院,2020年起担任江苏省力学学会理事。目前主要从事智能复合材料与结构的研究与开发工作,发表SCI论文60余篇,包括Computer Methods in Applied Mechanics and Engineering、Composites Part A、Composites Part B、Cement and Concrete Composites等相关领域内顶级和主流期刊,其中三篇入选ESI高被引。chuang.feng@njtech.edu.cn   
作者简介:  樊宇澄,2021年6月毕业于江苏科技大学,获得工学学士学位。现为南京工业大学土木工程学院硕士研究生,在冯闯教授的指导下进行研究。目前主要研究领域为智能复合材料与结构,以第一作者在Cement and Concrete Composites、International Journal of Mechanical Sciences等发表SCI论文四篇。
引用本文:    
樊宇澄, 冯闯. 热电水泥基复合材料研究现状及展望[J]. 材料导报, 2023, 37(17): 21110105-22.
FAN Yucheng, FENG Chuang. Current Status and Prospect of the Research of Thermoelectric Cement-based Composites. Materials Reports, 2023, 37(17): 21110105-22.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110105  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21110105
1 Debbage N, Shepherd J M. Computers, Environment and Urban Systems, 2015, 54, 181.
2 Liu X, Jiang B, Liao G, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2021, 29(10), 844.
3 Qian B Z. New Chemical Materials, 2009, 37(6), 26 (in Chinese).
钱伯章. 化工新型材料, 2009, 37(6), 26.
4 Sun M, Li Z, Mao Q, et al. Cement and Concrete Research, 1998, 28(4), 549.
5 Tzounis L, Liebscher M, Fuge R, et al. Energy and Buildings, 2019, 191, 151.
6 Wei J, Zhao L, Zhang Q, et al. Energy and Buildings, 2018, 159, 66.
7 Wei J, Zhao L L, Zhang Q, et al. Materials Reports, 2017, 31(1), 84 (in Chinese).
魏剑, 赵莉莉, 张倩, 等. 材料导报, 2017, 31(1), 84.
8 Dong W, Li W, Tao Z, et al. Construction and Building Materials, 2019, 203, 146.
9 Cui Y W, Wei Y. Acta Materiae Compositae Sinica, 2020, 37(9), 2077 (in Chinese).
崔一纬, 魏亚. 复合材料学报, 2020, 37(9), 2077.
10 García Á, Schlangen E, Van De Ven M, et al. Construction and Buil-ding Materials, 2009, 23(10), 3175.
11 Hsu H, Lee W, Wu K, et al. Journal of Applied Physics, 2012, 111(10), 103709.
12 Tang S, Chen E, Shao H, et al. Construction and Building Materials, 2015, 74, 73.
13 Du Y, Ge Y. Materials, 2021, 14(16), 4525.
14 Hai R, Bian Y D, Wu K R. Concrete, 2009(7), 55 (in Chinese).
海然, 边亚东, 吴科如. 混凝土, 2009(7), 55.
15 Liu K, Wang F, Wang X C, Journal of Building Materials, 2012, 15(6), 771 (in Chinese).
刘凯, 王芳, 王选仓. 建筑材料学报, 2012, 15(6), 771.
16 Jittabut P, Pinitsoontorn S, Thongbai P, et al. Chiang Mai Journal of Science, 2016, 43(5), 1160.
17 Wei J, Nie Z, He G, et al. RSC Advances, 2014, 4(89), 48128.
18 Ji T, Zhang X, Zhang X, et al. Journal of Materials in Civil Enginee-ring, 2018, 30(9), 04018224.
19 Ji T, Zhang S, He Y, et al. Journal of Building Engineering, 2021, 43, 103190.
20 Wei J, Fan Y, Zhao L, et al. Ceramics International, 2018, 44(6), 5829.
21 Ghosh S, Harish S, Rocky K A, et al. Energy and Buildings, 2019, 202, 109419.
22 Singh V P, Kumar M, Srivastava R S, et al. Materials Today Energy, 2021, 21, 100714.
23 中国建筑材料科学研究总院. 通用硅酸盐水泥:中华人民共和国国家质量监督检验检疫总局;中国国家标准化管理委员会, 中国标准出版社,2007.
24 Al-Hamadani Y A, Chu K H, Son A, et al. Separation and Purification Technology, 2015, 156, 861.
25 Fan J, Xiong G J, Li G Y. Materials Reports, 2014, 28(11), 142 (in Chinese).
范杰, 熊光晶, 李庚英. 材料导报, 2014, 28(11), 142.
26 Kharissova O V, Kharisov B I, De Casas Ortiz E G. RSC Advances, 2013, 3(47), 24812.
27 Baig Z, Mamat O, Mustapha M, et al. Ultrasonics Sonochemistry, 2018, 45, 133.
28 Poorsargol M, Alimohammadian M, Sohrabi B, et al. Applied Surface Science, 2019, 464, 440.
29 Wang Y, Wang Q, Zheng H Y, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(8), 2515 (in Chinese).
王悦, 王琴, 郑海宇, 等. 硅酸盐通报, 2021, 40(8), 2515.
30 Bourlinos A B, Georgakilas V, Zboril R, et al. Solid State Communications, 2009, 149(47-48), 2172.
31 Mateos R, Vera S, Valiente M, et al. Nanomaterials, 2017, 7(11), 403.
32 Luo J L. Fabrication and functional prorperties of multi-walled carbon nanotube/cement composites. Ph. D. Thesis, Harbin Institute of Technology, China, 2009 (in Chinese).
罗健林. 碳纳米管水泥基复合材料制备及功能性能研究. 博士学位论文, 哈尔滨工业大学, 2009.
33 Collins F, Lambert J, Duan W H. Cement and Concrete Composites, 2012, 34(2), 201.
34 Jia Z, Wei J, Wang Y, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2021, 29(12), 282.
35 Wei J, Wang Y, Li X, et al. ACS Applied Materials & Interfaces, 2021, 13(3), 3919.
36 Ozbulut O E, Jiang Z, Harris D K. Smart Materials and Structures, 2018, 27(11), 115029.
37 Oh Y, Choi J, Kim Y, et al. Scripta materialia, 2007, 56(9), 741.
38 Tucho W, Mauroy H, Walmsley J, et al. Scripta Materialia, 2010, 63(6), 637.
39 Jing G J, Ye Z M, Li C, et al. New Carbon Materials, 2019, 34(6), 569.
40 Cui S P, Liu Y X, Lan M Z, et al. Bulletin of the Chinese Ceramic Society, 2007(1), 91 (in Chinese).
崔素萍, 刘永肖, 兰明章, 等. 硅酸盐学报, 2007(1), 91.
41 Wang B, Jiang R, Zhao R. Journal of Nanoscience and Nanotechnology, 2017, 17(12), 9020.
42 Wang C, Li K Z, Li H J, et al. Acta Materiae Compositae Sinica, 2007(1), 135 (in Chinese).
王闯, 李克智, 李贺军, 等. 复合材料学报, 2007(1), 135.
43 Sun M Q, Zhang H, Li Z Q, et al. China Concrete and Cement Products, 2004(5), 38 (in Chinese).
孙明清, 张晖, 李卓球, 等. 混凝土与水泥制品, 2004(5), 38.
44 Han B G, Guan X C, Ou J P. Fiber Reinforced Plastics/Composites, 2004(4), 14 (in Chinese).
韩宝国, 关新春, 欧进萍. 玻璃钢/复合材料, 2004(4), 14.
45 Chang L W, Sun Y Z, Yue J C. Concrete, 2011(10), 108 (in Chinese).
常利武, 孙玉周, 乐金朝. 混凝土, 2011(10), 108.
46 Luo J L, Duan Z D. Fine Chemicals, 2008(8), 733 (in Chinese).
罗健林, 段忠东. 精细化工, 2008(8), 733.
47 Madni I, Hwang C Y, Park S D, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2010, 358(1-3), 101.
48 Long W J, Fang C, Wei J, et al. Materials, 2018, 11(5), 834.
49 Hamed L, Pouria G, Aa R, et al. Concrete International, 2015, 41, 845.
50 Azarsa P, Gupta R. Advances in Materials Science and Engineering, 2017, 8453095.
51 Layssi H, Ghods P, Alizadeh A R, et al. Concrete International, 2015, 37(5), 41.
52 Polder R B. Construction and Building Materials, 2001, 15(2-3), 125.
53 Morris W, Moreno E, Sagüés A. Cement and Concrete Research, 1996, 26(12), 1779.
54 Ling C B. Eperimental study on electrical properties of cement-based materials. Master’s Thesis, Southwest Jiaotong University, China, 2020 (in Chinese).
凌晨博. 水泥基材料导电特性试验研究. 硕士学位论文, 西南交通大学, 2020.
55 Jiang L H, Bai S Y, Jing M, et al. Journal of Harbin Engineering University, 2018, 39(3), 601 (in Chinese).
蒋林华, 白舒雅, 金鸣, 等. 哈尔滨工程大学学报, 2018, 39(3), 601.
56 Tritt T. Recent trends in thermoelectric materials research, part two. Academic Press, USA, 2000, pp. 67.
57 Martin J, Tritt T, Uher C. Journal of Applied Physics, 2010, 108(12), 14.
58 Ghosh S, Harish S, Ohtaki M, et al. Energy, 2020, 198, 117396.
59 Liu X, Jani R, Orisakwe E, et al. Renewable and Sustainable Energy Reviews, 2020, 137, 110361.
60 Tzounis L, Gravalidis C, Vassiliadou S, et al. Materials Today:Procee-dings, 2017, 4(7), 7070.
61 Yüksel N. in:Insulation materials in context of sustainability. Almusaed A, Almssad A, ed., IntechOpen, Croatia, 2016, pp. 113.
62 Zink B, Avery A, Sultan R, et al. Solid State Communications, 2010, 150(11-12), 514.
63 Gandage A S, Rao V V, Sivakumar M, et al. Procedia-Social and Beha-vioral Sciences, 2013, 104, 188.
64 Asadi I, Shafigh P, Hassan Z F B A, et al. Journal of Building Engineering, 2018, 20, 81.
65 Yang I, Kim D, Lee S. International Journal of Heat and Mass Transfer, 2018, 122, 1343.
66 Klarsfeld S. Compendium of Thermophysical Property Measurement Met-hods, 1984, 1, 169.
67 Alengaram U J, Al Muhit B A, Bin Jumaat M Z, et al. Materials & Design, 2013, 51, 522.
68 Shi J, Chen Z, Shao S, et al. Applied Thermal Engineering, 2014, 66(1-2), 156.
69 Ng S C, Low K S. Energy and Buildings, 2010, 42(12), 2452.
70 Krishnamoorthy R R, Zujip J A. International Journal of Emerging Technology and Advanced Engineering, 2013, 3, 463.
71 Sayadi A A, Tapia J V, Neitzert T R, et al. Construction and Building Materials, 2016, 112, 716.
72 Pomianowski M, Heiselberg P, Jensen R L, et al. Cement and Concrete Research, 2014, 55, 22.
73 Taoukil D, Sick F, Mimet A, et al. Construction and Building Materials, 2013, 48, 104.
74 Belkharchouche D, Chaker A. International Journal of Hydrogen Energy, 2016, 41(17), 7119.
75 Bessenouci M, Bibi-Triki N, Bendimerad S, et al. Physics Procedia, 2014, 55, 150.
76 Schieirmacher A. Wiedemann. Annals of Physics, 1888, 34, 38.
77 Van Der Held E, Van Drunen F. Physica, 1949, 15(10), 865.
78 Haupin W. American Ceramics Society Bulletin, 1960, 39(3), 139.
79 Merckx B, Dudoignon P, Garnier J, et al. Advances in Civil Enginee-ring, 2012, 625395.
80 Dos Santos W, Gregório R. Cerómica, 2003, 49, 29.
81 Wongkeo W, Thongsanitgarn P, Pimraksa K, et al. Materials & Design, 2012, 35, 434.
82 Wong J M, Glasser F, Imbabi M. Cement and Concrete Composites, 2007, 29(9), 647.
83 Collet F, Pretot S. Construction and Building Materials, 2014, 65, 612.
84 Demirboga R, Kan A. Construction and Building Materials, 2012, 35, 730.
85 Demirboğa R, Gül R. Energy and Buildings, 2003, 35(11), 1155.
86 Demirboğa R. Building and Environment, 2007, 42(7), 2467.
87 Topçu İ B, Uygunolu T. Building and Environment, 2007, 42(12), 4108.
88 Ünal O, Uygunolu T, Yildiz A. Building and Environment, 2007, 42(2), 584.
89 Khan M. Building and Environment, 2002, 37(6), 607.
90 Demirboa R. Energy and Buildings, 2003, 35(2), 189.
91 Demirboa R, Türkmen, Karakoç M B. Building and Environment, 2007, 42(1), 349.
92 Gustafsson S E. Review of Scientific Instruments, 1991, 62(3), 797.
93 Log T, Gustafsson S. Fire and Materials, 1995, 19(1), 43.
94 Bederina M, Marmoret L, Mezreb K, et al. Construction and Building Materials, 2007, 21(3), 662.
95 Jin H Q, Yao X L, Fan L W, et al. International Journal of Heat and Mass Transfer, 2016, 92, 589.
96 Wadsö L, Karlsson J, Tammo K. Cement and Concrete Research, 2012.
97 Chan J. Thermal properties of concrete with different Swedish aggregate materials. Master’s Thesis, Lund University, Sweden, 2014.
98 Sie F R, Liu H J, Kuo C H, et al. Intermetallics, 2018, 92, 113.
99 Snyder G J, Toberer E S. In:Materials for sustainable energy:a collection of peer-reviewed research and review articles from Nature Publishing Group. UK, 2010, pp. 101.
100 Sun M Q, Li Z Q, Mao Q Z, et al. Cement and Concrete Research, 1998, 28(12), 1707.
101 Chand S. Journal of Materials Science, 2000, 35(6), 1303.
102 Xia L, Jia B, Zeng J, et al. Materials Characterization, 2009, 60(5), 363.
103 Sun Mingqing, Li Zhuoqiu, Mao Qizhao, et al. Cement and Concrete Research, 1999, 29(5), 769.
104 Wen S, Chung D. Cement and Concrete Research, 1999, 29(12), 1989.
105 Wen S, Chung D. Cement and concrete research, 2000, 30(8), 1295.
106 Chen B, Yao W, Wu K R. Journal of Building Materials, 2004(3), 261 (in Chinese).
陈兵, 姚武, 吴科如. 建筑材料学报, 2004(3), 261.
107 Bahar D, Salih Y. New Carbon Materials, 2008, 23(1), 21.
108 Ozin G A, Hou K, Lotsch B V, et al. Materials Today, 2009, 12(5), 12.
109 Chakraborty P, Ma T, Zahiri A H, et al. Advances in Condensed Matter Physics, DOI: 10.1155/2018/3898479.
110 Blackburn J L, Ferguson A J, Cho C, et al. Advanced Materials, 2018, 30(11), 1704386.
111 Zuo J Q, Yao W, Qin J J, et al. Key Engineering Materials, 2012, 492, 242.
112 Zuo J, Yao W, Wu K. Fullerenes, Nanotubes and Carbon Nanostructures, 2015, 23(5), 383.
113 Vareli I, Tzounis L, Tsirka K, et al. Journal of Materials Chemistry C, 2021, 9(40), 14421.
114 Wei J, Miao Z, Wang Y, et al. Energy and Buildings, 2022, 254, 111617.
115 Cao H Y, Yao W, Qin J J. Advanced Materials Research, 2011, 177, 566.
116 Taherian R. In:Electrical conductivity in polymer-based composites, Taherian R, Kausar A, ed., Elsevier, Iran, 2018, pp. 183.
117 Pichór W, Fróc M. Composites Theory and Practice, 2012, 12(3), 205.
118 Pichór W, Fróc M. Brittle Matrix Composites, 2012, 10, 43.
119 Wei J, Zhang Q, Zhao L, et al. Ceramics International, 2017, 43(14), 10763.
120 Choi W, Lahiri I, Seelaboyina R, et al. Critical Reviews in Solid State and Materials Sciences, 2010, 35(1), 52.
121 Balandin A A. Thermal properties of graphene, carbon nanotubes and nanostructured carbon materials. Ph. D. Thesis, University of California, USA, 2017.
122 Yan S, Yan S, Tang J, et al. Journal of Applied Mechanics and Technical Physics, 2020, 61(6), 972.
123 Cao M L, Zhang H X, Zhang C. Journal of Harbin Institute of Technology, 2015, 47(12), 26 (in Chinese).
曹明莉, 张会霞, 张聪. 哈尔滨工业大学学报, 2015, 47(12), 26.
124 Zhao Y, Liu Y, Shi T, et al. Construction and Building Materials, 2020, 257, 119498.
125 Lin Y, Du H. Construction and Building Materials, 2020, 265, 120312.
126 Robinson J T, Zalalutdinov M, Baldwin J W, et al. Nano Letters, 2008, 8(10), 3441.
127 Zhu Y, Murali S, Cai W, et al. Advanced Materials, 2010, 22(35), 3906.
128 Wang Q, Qi G D, Wang Y, et al. New Carbon Materials, 2021, 36(4), 729.
129 Wei J, Jia Z, Wang Y, et al. Energy and Buildings, 2021, 250, 111279.
130 Wang M, Wang R, Yao H, et al. Construction and Building Materials, 2016, 126, 730.
131 Wen S, Chung D. Cement and Concrete Research, 2000, 30(4), 661.
132 Wen S, Chung D. Cement and Concrete Research, 2002, 32(5), 821.
133 Wen S, Chung D. Journal of Materials Science, 2004, 39(13), 4103.
134 He J, Tritt T M. Science, 2017, 357(6358).
135 Yao W, Xia Q. Journal of Functional Materials, 2014, 45(15), 15134 (in Chinese).
姚武, 夏强. 功能材料, 2014, 45(15), 15134.
136 Ji T, Zhang X, Li W. Construction and Building Materials, 2016, 115, 576.
137 Xiao L, Ji T, Liao X, et al. New Building Materials, 2019, 46(3), 32 (in Chinese).
肖龙, 季涛, 廖晓, 等. 新型建筑材料, 2019, 46(3), 32.
138 Tang Z Q, Tong C F, Qian J S, et al. Journal of Chongqing Jianzhu University, 2008(3), 125 (in Chinese).
唐祖全, 童成丰, 钱觉时, 等. 重庆建筑大学学报, 2008(3), 125.
139 Wang Z Y, Wang Z, Ning M, et al. Journal of Building Materials, 2018, 21(5), 701 (in Chinese).
王子仪, 王智, 宁美, 等. 建筑材料学报, 2018, 21(5), 701.
140 Wei J, Hao L, He G P, et al. Applied Mechanics and Materials, 2013, 320, 354.
141 Wei J, Hao L, He G, et al. Ceramics International, 2014, 40(6), 8261.
142 Liu X, Liao G, Zuo J. Fullerenes, Nanotubes and Carbon Nanostructures, 2021, 29(4), 295.
143 Ji T, Zhang S, He Y, et al. Journal of Building Engineering, 2021, 43, 103190.
144 Wei Y, Miao Z, Jia Z, et al. Fullerenes, Nanotubes and Carbon Nanostructures, 2022, 30(8), 801.
145 Wei J, Li X, Wang Y, et al. Journal of Materials Chemistry C, 2021, 9(10), 3682.
146 Zhao W Y, Zhang W F, Ma C H, et al. Journal of Daqing Petroleum Institute, 2008, 32(6), 83 (in Chinese).
赵文艳, 张文福, 马昌恒, 等. 大庆石油学院学报, 2008, 32(6), 83.
147 Zuo J Q, Yao W, Qin J J. Key Engineering Materials, 2013, 539, 103.
148 Wei J, Zhang Q, Zhao L, et al. Ceramics International, 2016, 42(10), 11568.
149 Wang Z, Wang Z, Ning M, et al. Ceramics International, 2017, 43(12), 8685.
150 Ghahari S, Ghafari E, Lu N. Construction and Building Materials, 2017, 146, 755.
151 Ni Y, Xia Y, Liao W, et al. Structural Control and Health Monitoring, 2009, 16(1), 73.
152 Pichór W, Fróc M. Advances in Cement Research, 2020, 32(9), 413.
153 Yehia S A, Tuan C Y. Transportation Research Record, 2000, 1698(1), 45.
154 Tang Z Q, Li Z Q, Qian J S. Journal of Building Materials, 2004(2), 215 (in Chinese).
唐祖全, 李卓球, 钱觉时. 建筑材料学报, 2004(2), 215.
155 Li D, Dong F Q, Shen G. New Building Materials, 2004(11), 61 (in Chinese).
李丹, 董发勤, 沈刚. 新型建筑材料, 2004(11), 61.
156 Wei X D. Application of carbon fiber conductive concrete in pavement structure. Master’s Thesis, Zhejiang University, China, 2010 (in Chinese).
魏晓冬. 碳纤维导电混凝土在路面结构中的应用研究. 硕士学位论文, 浙江大学, 2010.
157 Chen L. Study on snow melting and ice melting performance of lightweight aggregate conductive concrete pavement. Master’s Thesis, Wuhan University of Technology, China, 2010 (in Chinese).
陈龙. 轻集料导电混凝土路面融雪化冰性能研究. 硕士学位论文, 武汉理工大学, 2010.
158 Liu J G. Study on the application of three-phase composite conductive concrete in snow melting and ice melting of roads and bridge decks. Master’s Thesis, Chang’an University, China, 2014 (in Chinese).
刘建国. 三相复合导电混凝土用于道路及桥面融雪化冰的研究. 硕士学位论文, 长安大学, 2014.
159 Wu G, Yu X. In:Conference Record of the 2012 IEEE Energytech. Cleveland, OH, USA, 2012, pp. 1.
160 Tahami A, Gholikhani M, Khalili R, et al. In:Tran-SET 2020:American Society of Civil Engineers Reston. VA, 2021, pp. 9.
161 Tuan C Y. Nebraska Department of Transportation Research Reports, 2008, 22(1), 1.
[1] 方思怡, 巴明芳, 许浩锋, 张晨剑, 谢嘉磊, 王志豪. HEC分散剂和纤维掺量对短切碳纤维水泥基材料压敏性的影响[J]. 材料导报, 2023, 37(15): 22020152-9.
[2] 丁聪, 任金明, 王永明, 李新宇, 俞兵, 郭丽萍. 高延性水泥基复合材料用短切PVA纤维的长度优选研究[J]. 材料导报, 2023, 37(13): 21080025-8.
[3] 张娜, 周健. 高温处理后玄武岩纤维水泥基复合材料应变率效应研究[J]. 材料导报, 2022, 36(Z1): 20040024-5.
[4] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[5] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[6] 冯雨琛, 李地红, 卞立波, 李紫轩, 张亚晴. 芳纶纤维增强水泥基复合材料力学性能与冲击性能研究[J]. 材料导报, 2021, 35(z2): 634-637.
[7] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[8] 张梦杰, 李翔, 乔师帅, 王元, 魏剑. 改性碳纳米管水泥基复合材料热电非平衡融冰性能[J]. 材料导报, 2021, 35(8): 8049-8055.
[9] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[10] 何晓雁, 张智鑫, 赵燕茹, 郝贠洪, 秦立达. 基于灰靶决策对BFCC力学性能及抗渗性能的评估[J]. 材料导报, 2021, 35(20): 20035-20039.
[11] 乔师帅, 王元, 贾朝阳, 蒋一昌, 魏剑. PMMA光纤直径对透光水泥基复合材料性能的影响[J]. 材料导报, 2021, 35(18): 18059-18063.
[12] 马衍轩, 李梦瑶, 朱鹏飞, 徐亚茜, 于霞, 彭帅, 张鹏, 张颖锐, 王金华. 超高性能水泥基复合材料的多尺度设计与抗爆炸性能研究进展[J]. 材料导报, 2021, 35(17): 17190-17198.
[13] 郭伟娜, 张鹏, 鲍玖文, 孙治国, 田玉鹏, 赵凯月, 赵铁军. 应变硬化水泥基复合材料动力学性能研究现状与进展[J]. 材料导报, 2021, 35(17): 17199-17209.
[14] 于海洋, 李地红, 代函函, 高群. 混杂纤维增强应变硬化水泥基复合材料的弯曲性能研究[J]. 材料导报, 2020, 34(Z1): 229-233.
[15] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed