Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 21090127-6    https://doi.org/10.11896/cldb.21090127
  金属与金属基复合材料 |
高速列车制动盘设计中若干问题的研究现状
刘珏1,2, 董世运2,*, 王东星3, 金鑫1, 闫世兴2, 刘晓亭2, 王锁成2, 徐滨士1,2
1 北京理工大学机械与车辆学院,北京 100081
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 中车唐山机车车辆有限公司,河北 唐山 063035
Research Status of Several Issues in the Design of Brake Discs for High-speed Trains
LIU Jue1,2, DONG Shiyun2,*, WANG Dongxing3, JIN Xin1, YAN Shixing2, LIU Xiaoting2, WANG Suocheng2, XU Binshi1,2
1 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces, Beijing 100072, China
3 CRRC TANGSHAN Co., Ltd., Tangshan 063035, Hebei, China
下载:  全 文 ( PDF ) ( 6970KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高速列车制动盘是列车制动系统的核心工作零件,通过制动盘与制动闸片间的摩擦接触将动能转化为热能以实现紧急制动,进而保证列车安全,因此制动盘的性能直接影响列车的制动效果。随着列车提速,制动过程需要吸收更多的能量,从而导致制动盘温度快速升高甚至超出材料的安全使用范围,这将使现有制动盘设计无法满足工程需求,因此必须研制性能更优的制动盘产品。
制动盘的设计是一个系统性问题,涉及制动盘的材料、结构、成形方法、热处理等多方面内容且各因素互相影响。其中,新材料的研发是制动盘研究的重要内容,其发展方向为工程陶瓷基复合材料和复合纤维基材料,但材料自身缺陷及制备工艺不成熟导致其仍处于实验室阶段,而工业生产中多使用铸钢和锻钢。目前对制动盘的结构设计仅考虑了结构成形性,导致其结构设计冗余、散热能力有限,本文在结构设计部分重点介绍了制动盘散热特性和应力分布两方面的研究,并分析了现有研究方法的特点和存在的问题,指出试验-仿真方法对新型制动盘的设计及性能评估意义重大。在制备工艺方面,表面强化、增材制造等新技术的引入增大了制动盘的设计自由度,有利于产品性能的提升。
本文从材料性能、结构设计和制备工艺三个重要方面详细阐述了制动盘的研究现状,对高速列车制动盘的研究内容和发展方向进行了展望,为制动盘的精细化、轻量化设计提供了研究思路和理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘珏
董世运
王东星
金鑫
闫世兴
刘晓亭
王锁成
徐滨士
关键词:  制动盘  复合材料  散热特性  应力分布    
Abstract: The brake disc is the core part of the braking system for high-speed trains. The friction between the brake disc and brake pads directly affects the braking performance to ensure safety, which converts the kinetic energy into heat energy to achieve emergency braking. With the train speeds up, the brake disc needs to absorb more energy and it causes the temperature to rise rapidly and even exceed the safety range of the material, so the higher performance brake disc needs to be developed.
The brake disc design is a systematic problem, which involved the material, structure, forming method, heat treatment, etc. The factors are closely related and influence each other. It is important content to develop new materials, the ceramic composite and fibrous composite materials are the main development directions. However, they are still in the laboratory stage due to material defects and the immature preparation process. At present, cast steel and forged steel are widely used in the production of the brake disc. When using traditional technologies, the only consideration for the structure design is structural formability, which results in structural redundancy and limits the heat dissipation capacity. And the heat dissipation characteristics and stress distribution are also summarised and discussed. For the design and evaluation of the high-perfor-mance disc, the method of combining experiment and simulation is of significance, and the problem about the research method is also pointed out. About the forming method, the design freedom of the brake disc is expanded by advanced manufacturing technologies such as surface strengthening and additive manufacturing, which is conducive to improving the braking performance.
In this paper, the research status is reviewed including material performance, structure design, and manufacturing technology about the brake disc. The research content and development direction about the brake disc design are also proposed, which provides ideas and theories for the precise design and lightweight design.
Key words:  brake disc    composite material    heat dissipation characteristic    stress distribution
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  U266  
基金资助: 国家重点研发计划(2016YFB1100205)
通讯作者:  *董世运,1995年、1997年和2000年于哈尔滨工业大学分别获得学士学位、硕士学位和博士学位,现为陆军装甲兵学院装备再制造技术国防科技重点实验室研究员,主要研究方向为表面工程、激光制造与再制造及其质量无损检测评价等。发表SCI/EI学术论文100余篇,授权国家发明专利20余项,撰写和参编著作12部。syd422@vip.sohu.com   
作者简介:  刘珏,2015年和2018年于长春理工大学分别获得学士学位、硕士学位,现为北京理工大学机械与车辆学院博士研究生,主要研究方向为高速列车制动盘结构设计和面向增材制造的结构设计。
引用本文:    
刘珏, 董世运, 王东星, 金鑫, 闫世兴, 刘晓亭, 王锁成, 徐滨士. 高速列车制动盘设计中若干问题的研究现状[J]. 材料导报, 2023, 37(14): 21090127-6.
LIU Jue, DONG Shiyun, WANG Dongxing, JIN Xin, YAN Shixing, LIU Xiaoting, WANG Suocheng, XU Binshi. Research Status of Several Issues in the Design of Brake Discs for High-speed Trains. Materials Reports, 2023, 37(14): 21090127-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090127  或          http://www.mater-rep.com/CN/Y2023/V37/I14/21090127
1 Tang C J, Chen Y B, Zuo L L, et al. Materials Reports, 2018, 32(S1), 443 (in Chinese).
汤忖江, 陈蕴博, 左玲立, 等. 材料导报, 2018, 32(S1), 443.
2 Fu Q. Thermomechanical coupling analysis and structural optimization design of C/SiC brake disc. Master’s Thesis, Shangdong University, China, 2020 (in Chinese).
付强. 碳陶制动盘的热力耦合分析与结构优化设计. 硕士学位论文, 山东大学, 2020.
3 Zhao Z L. Deviation analysis of small scale braking model and 1∶1 braking model. Master’s Thesis, Dalian Jiaotong University, China, 2016 (in Chinese).
赵泽亮. 缩比制动模型与1∶1制动模型的偏差分析. 硕士学位论文, 大连交通大学, 2016.
4 Zheng Y G, Xiong X. Machinery Design & Manufacture, 2019(11), 107 (in Chinese).
郑尧刚, 熊新. 机械设计与制造, 2019(11), 107.
5 Zhang C, Ma L, Ding H H, et al. Journal of Mechanical Engineering, 2021, 57(8), 230 (in Chinese).
张超, 马蕾, 丁昊昊, 等. 机械工程学报, 2021, 57(8), 230.
6 Cheng H, Xue N J, Hou W Q, et al. Carbon, 2020(3), 29 (in Chinese).
程皓, 薛宁娟, 侯卫权, 等. 炭素, 2020(3), 29.
7 Li Y L, Sun L, Cao L X, et al. Materials Reports, 2020, 34(S1), 361 (in Chinses).
李亚林, 孙垒, 曹柳絮, 等. 材料导报, 2020, 34(S1), 361.
8 Sheng H, Wang Z H, Shao J, et al. Materials for Mechanical Enginee-ring, 2016, 40(1), 1 (in Chinese).
盛欢, 王泽华, 邵佳, 等. 机械工程材料, 2016, 40(1), 1.
9 Li J S, Li H P, Jiao B Q, et al. Applied Mechanics & Materials, 2013, 419, 370.
10 Ma X, Luan C H, Fan S W, et al. Tribology International, 2020, 154.
11 Ma X, Fan S W, Sun H D, et al. Tribology International, 2020, 142.
12 Chen F X, Yan J Y, Wang T J, et al. Internal Combustion Engine & Parts, 2021(7), 198 (in Chinese).
陈飞雄, 颜君毅, 王铁军, 等. 内燃机与配件, 2021(7), 198.
13 Qian K C, Liu Y, Que H B. Materials Science and Engineering of Powder Metallurgy, 2009, 14(4), 250 (in Chinese).
钱坤才, 刘颖, 阙红波. 粉末冶金材料科学与工程, 2009, 14(4), 250.
14 Jin W W, Du L Q, Qian K C, et al. Locomotive & Rolling Stock Techno-logy, 2017(4), 6 (in Chinese).
金文伟, 杜利清, 钱坤才, 等. 机车车辆工艺, 2017(4), 6.
15 Lu J N, Han J M, Li R H, et al. Journal of the China Railway Society, 2003(6), 108 (in Chinese).
芦金宁, 韩建民, 李荣华, 等. 铁道学报, 2003(6), 108.
16 Wang F, Li P S, Yu Q S. Heat Treatment of Metals, 2015, 40(12), 40 (in Chinese).
王飞, 李培署, 于钦顺. 金属热处理, 2015, 40(12), 40.
17 Dai Y K. Locomotive & Rolling Stock Technology, 1994(2), 1 (in Chinese).
戴雅康. 机车车辆工艺, 1994(2), 1.
18 Li L. Railway Locomotive & Car, 2017, 37(1), 113 (in Chinese).
李莉. 铁道机车车辆, 2017, 37(1), 113.
19 Zhang J Q, Zhou S X, Yang Y, et al. Engineering Mechanics, 2011, 28(8), 252 (in Chinese).
张俊清, 周素霞, 杨月, 等. 工程力学, 2011, 28(8), 252.
20 Chen S J, Wang D X, Qing J Y, et al. Railway Locomotive & Car, 2014, 34(4), 14 (in Chinese).
陈澍军, 王东星, 秦佳颖, 等. 铁道机车车辆, 2014, 34(4), 14.
21 Jin Y X, Jung M L, Suk B K. Rare Metal Materials and Engineering, 2008(11), 1956 (in Chinese).
金云学, Jung Moo Lee, Suk Bong Kang. 稀有金属材料与工程, 2008(11), 1956.
22 Li J S, Li H P, Jiao B Q, et al. Applied Mechanics and Materials, 2013, 419, 370.
23 Ma X, Fan S, Luan C, et al. Wear, 2021, 477, 203851.
24 Xia D M, Xi Y, Chen Z, et al. Journal of Machine Design, 2015, 32(2), 7 (in Chinese).
夏德茂, 奚鹰, 陈哲, 等. 机械设计, 2015, 32(2), 7.
25 Tan X L, Zuo X L, Zhang J, et al. Journal of Jiangsu University of Science and Technology ( Natural Science Edition), 2016, 30(3), 254 (in Chinese).
谭雪龙, 左新龙, 张建, 等. 江苏科技大学学报(自然科学版), 2016, 30(3), 254.
26 Mcphee A D, Johnson D A. International Journal of Thermal Sciences, 2008, 47(4), 458.
27 Pan L K, Han J M, Li Z Q, et al. Journal of Beijing Jiaotong University, 2015, 39(1), 118 (in Chinese).
潘利科, 韩建民, 李志强, 等. 北京交通大学学报, 2015, 39(1), 118.
28 Grivc U, Derzic D, Muhic S. Journal of Modern Transportation, 2019, 27(1), 5.
29 Liu J J, Liu Y, Kang G L, et al. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(6), 4.
刘静娟, 刘莹, 康光林, 等. 机械科学与技术, 2018, 37(6), 4.
30 Gu D W. Cooling research and structure optimization of ventilated brake disk based on CFD. Master’s Thesis, Zhejiang University, China, 2018 (in Chinese).
顾大炜. 基于CFD的通风制动盘散热性能研究与结构优化. 硕士学位论文, 浙江大学, 2018.
31 Palmer E, Mishra R, Fieldhouse J. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 2008, 222(7), 1231.
32 Jin X, Zhang Y H, Wang L B, et al. Chinese Science Bulletin, 2015, 60(23), 2245 (in Chinese).
金星, 张永恒, 王良璧, 等. 科学通报, 2015, 60(23), 2245.
33 Seghir O, Saury D, Harmand S, et al. International Journal of Thermal Sciences, 2006, 45(12), 1166.
34 Zhao X H. Design and analysis of new type brake disc for EMIU based on finite element method. Master’s Thesis, Beijing University of Civil Engineering and Architecture, China, 2019 (in Chinese).
赵兴晗. 基于有限元法的动车组新型制动盘设计与分析. 硕士学位论文, 北京建筑大学, 2019.
35 Wang H Y, Li Z J, Mo S X, et al. Welding & Joining, 2007(3), 14 (in Chinese).
王红英, 李志军, 莫守形, 等. 焊接, 2007(3), 14.
36 Niu Y C, Li F, Li X R, et al. Electric Drive for Locomotives, 2019(6), 5 (in Chinese).
牛悦丞, 李芾, 李新荣, 等. 机车电传动, 2019(6), 5.
37 Yang Q. Simulation and analysis of temperature field and stress field of train brake Disc. Master’s Thesis, Beijing Jiaotong University, China, 2009 (in Chinese).
杨强. 列车制动盘温度场和应力场仿真与分析. 硕士学位论文, 北京交通大学, 2009.
38 Belhocine, Afzal. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2020, 3(1), 53.
39 Xia D M, Xi Y, Zhou Y H. Chinese Journal of Construction Machinery, 2015, 13(5), 388 (in Chinese).
夏德茂, 奚鹰, 周亚红. 中国工程机械学报, 2015, 13(5), 388.
40 Zhang Q, Chang B H, Wang L, et al. China Railway Science, 2007(1), 81 (in Chinese).
张谦, 常保华, 王力, 等. 中国铁道科学, 2007(1), 81.
41 Panier, Dufrénoy, Weichert. Wear, 2007, 256(7-8), 764.
42 Asif A, Muhammad A M. Archives of Computational Methods in Enginee-ring, 2018, 1.
43 Li Z, Xiao P, Zhang B G, et al. International Journal of Applied Ceramic Technology, 2016, 13(3), 423.
44 Wang F, Ban Y F. Modern Cast Iron, 2020, 40(2), 19 (in Chinese).
王峰, 班云峰. 现代铸铁, 2020, 40(2), 19.
45 Wang D M. Study on forging technology and microstructure and properties of ventilated forged steel brake disc. Master’s Thesis, Beijing Jiaotong University, China, 2019 (in Chinese).
王德民. 通风式锻钢制动盘锻造工艺及组织性能研究. 硕士学位论文, 北京交通大学, 2019.
46 Peter F, Alena P, Gabriel F, et al. Engineering Failure Analysis, 2019, 95, 226.
47 Song G S, Han J M, Li W J, et al. Journal of Northern Jiaotong University, 2002(4), 71 (in Chinese).
宋光森, 韩建民, 李卫京, 等. 北方交通大学学报, 2002(4), 71.
48 Wolff E G. Materials Research Bulletin, 1995, 30(12), 1585.
49 Li Q C, Jia S Y. Foreign Technology, 1989(8), 29 (in Chinese).
李庆春, 贾淑云. 国外科技, 1989(8), 29.
50 Jean P, Bricout. Foreign Locomotive & Rolling Stock Technology, 2004 (1), 25 (in Chinese).
Jean P, Bricout. 国外机车车辆工艺, 2004 (1), 25.
51 Jian Q. International Journal of Thermal Sciences, 2020, 155(2020), 106356.
[1] 刘海韬, 姜如, 孙逊, 陈晓菲, 马昕, 杨方. 多孔Al2O3f/Al2O3复合材料研究进展[J]. 材料导报, 2023, 37(9): 22070158-10.
[2] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[3] 刘云福, 刘峰, 姚初清, 蒋丹枫, 韩文敏, 戴耀东. 基于泡沫陶瓷三维互穿网络负压浸渍法制备新型耐高温中子屏蔽材料[J]. 材料导报, 2023, 37(8): 21090118-9.
[4] 杨赟, 刘璇, 崔益华, 余彤, 武康乐, 潘蕾. 植物纤维增强树脂基复合材料界面纳米化改性的研究进展及应用[J]. 材料导报, 2023, 37(8): 21100069-11.
[5] 张曦挚, 崔红, 胡杨, 邓红兵. 利用等离子喷涂制备C/C复合材料表面耐烧蚀抗氧化涂层的研究进展[J]. 材料导报, 2023, 37(6): 21050162-7.
[6] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[7] 杨湘杰, 杨颜, 刘军, 史坤, 郑彬. 半固态等温热处理对Zr基非晶复合材料塑性变形机制的影响[J]. 材料导报, 2023, 37(4): 21080252-7.
[8] 刘洋, 庄蔚敏. 金属-聚合物及金属-复合材料薄壁结构压印连接技术的研究进展[J]. 材料导报, 2023, 37(3): 21110241-12.
[9] 刘婷, 朱宇, 胡晓, 张松. 超声增材制造在航空航天领域的应用进展[J]. 材料导报, 2023, 37(2): 21040295-8.
[10] 仝博, 李永清, 张振海, 赵存生. 复合材料多层圆柱壳振动和声辐射问题研究进展[J]. 材料导报, 2023, 37(2): 21030025-8.
[11] 项赫, 姜亚明, 杨晨, 周艺颖. 基于双目视觉的纬编双轴向壳体复合材料纱线取向检测方法[J]. 材料导报, 2023, 37(14): 21110125-6.
[12] 冯荣欣, 但年华, 陈一宁, 但卫华. 胶原基生物材料在医学美容领域的研究进展[J]. 材料导报, 2023, 37(14): 21110149-9.
[13] 李小龙, 王坦, 左孝青, 代彪, 周芸. 液相网络及相对密度对SiCp/2024复合材料显微组织与力学性能的影响[J]. 材料导报, 2023, 37(14): 21120017-6.
[14] 刘虎, 束小文, 洪智亮, 杨金华, 郭洪宝, 孙世杰, 焦健. 航空发动机用SiC/SiC复合材料典型元件设计及性能评价研究进展[J]. 材料导报, 2023, 37(14): 22010147-8.
[15] 吴佳洪, 王文广, 倪丁瑞, 肖伯律, 李荣德, 林楠, 武秋生, 夏津. TiB2纳米涂层改性碳纤维增强Mg基复合材料的微观结构及力学性能[J]. 材料导报, 2023, 37(14): 22030117-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed