Abstract: The directional motion of droplets on solid surfaces is of great research value and has been widely used in water collection, oil-water separation, microfluidics, etc., which has become a research hotspot in the field of surface interface. At the same time, the study of droplet orientation motion behavior is of great significance for understanding the mechanism of action between liquid and solid surfaces. However, the current research on the directional movement of droplets mainly focuses on macroscopic scale observation and analysis, lacks in-depth exploration of the basic principles and lacks understanding of the basic conditions for achieving droplet directional motion. At the same time, the current artificial biomimetic materials are complicated and costly, and their relatively short moving distance and relatively small moving speed limit their application range. In addition, although the majority of scholars have made great achievements in the research of droplet directional motion behavior, such as micro-mixers, fluid diodes, etc., these studies are only limited to the “laboratory” stage, applying it widely to daily life needs further research. Fortunately, the current scholars have started from the basic principle of droplet wetting and found that the surface of natural materials such as cactus, Nepenthes alata, Sarracenia,spider silk and butterfly,etc. can realize the directional movement of droplets. And the directional movement speed of droplets on the surface of Sarracenia trichome is up to (1 1738±715) μm·s-1. On this basis, the majority of scholars have made further biomimetic research on cactus spine, Nepenthes alata peristome, Sarracenia trichome,spider silk, etc. by electrospinning, electrochemical etching, photolithography, dip-coating, etc.,and the biomimetic spider silk achieves reversible movement of the droplets and efficient water collection. In addition, inspired by the directional movement of droplets on the surface of natural materials, some scholars have developed topological fluid diodes that realize rapid, long-distance and direction-controllable movement of droplets. The simple arrow-shaped microstructures provide a possibility for practical applications. This paper comprehensively reviews the recent research progress of domestic and foreign scholars on the surface directional movement beha-vior of natural materials such as cactus, Nepenthes alata, Sarracenia, spider silk and butterfly. The basic principle of directional movement of so-lid surface droplets is analyzed from the angle of force, and a typical example of bionic self-orienting surface at home and abroad is demonstrated. Finally, some suggestions for future research work are presented.
1 Ju J, Bai H, Zheng Y M, et al. Nature Communications, 2012, 3, 1247. 2 Zheng Y M, Bai H, Huang Z B, et al. Nature, 2010, 463(7281), 640. 3 Parker A R, Lawrence C R. Nature, 2001, 414(6859), 33. 4 Chen H W, Ran T, Gan Y, et al. Nature Materials, 2018, 17(10), 935. 5 Chen H W, Zhang P F, Zhang L W, et al. Nature, 2016, 532(7597), 85. 6 Goodwyn P P, Maezono Y, Hosoda N, et al. Naturwissenschaften, 2009, 96(7), 781. 7 Jiang J K, Gao J, Zhang H D, et al. Proceedings of the National Academy of Sciences of the Unieted States of America, 2019, 116(7), 2482. 8 Wang B, Guo Z G. Applied Physics Letteers, 2013, 103(6), 063704. 9 Li C X, Wu L, Yu C L, et al. Angewandte Chemie-International Edition, 2017, 56(44), 13623. 10 Li K, Ju J, Xue Z X, et al. Nature Communications, 2013, 4, 2276. 11 Liang L H, Wang W, Chen J J, et al. Materials, 2019, 12(7), 1043. 12 Ma H Y, Cao M Y, Zhang C H, et al. Advanced Functional Materials, 2018, 28(7), 1705091. 13 Kang E, Shin S J, Lee K H, et al. Lab on a Chip, 2010, 10(14), 1856. 14 Shin S J, Park J Y, Lee J Y, et al. Langmuir, 2007, 23(17), 9104. 15 Kang E, Jeong G S, Choi Y Y, et al. Nature Materials, 2011, 10(11), 877. 16 Ju J, Yao X, Yang S, et al. Advanced Functional Materials, 2014, 24(44), 6933. 17 Wang X K, Zeng J, Yu X Q, et al. Journal of Materials Chemistry A, 2019, 7(10), 5426. 18 Zhong L S, Feng J, Guo Z G. Journal of Materials Chemistry A, 2019, 7(14), 8405. 19 Hu R J, Wang N, Hou L L, et al. Journal of Materials Chemistry A, 2019, 7(1), 124. 20 Park K C, Kim P, Grinthal A, et al. Nature, 2016, 531(7592), 78. 21 Cui Y, Li D W, Bai H. Industrial & Engineering Chemistry Research, 2017, 56(17), 4887. 22 Zhao L, Song C, Zhang M X, et al. Chemical Communications, 2014, 50(73), 10651. 23 Ahmed R, Ji X C, Atta R M H, et al. RSC Advances, 2018, 8(48), 27111. 24 Li Q S, Zeng Q, Shi L, et al. Journal of Materials Chemistry C, 2016, 4(9), 1752. 25 Kang S H, Tai T Y, Fang T H. Current Applied Physics, 2010, 10(2), 625. 26 Byun D, Hong J, Saputra, et al. Journal of Bionic Engineering, 2009, 6(1), 63. 27 Gu Z Z, Uetsuka H, Takahashi K, et al. Angewandte Chemie-International Edition, 2003, 42(8), 894. 28 Zhou H, Wang H X, Niu H T, et al. Scientific Reports, 2013, 3, 2964. 29 Wang H X, Zhou H, Yang W D, et al. ACS Applied Materials & Interfaces, 2015, 7(41), 22874. 30 Li J, Guo Z G. Nanoscale, 2018, 10(29), 13814. 31 Tian X L, Jin H, Sainio J, et al. Advanced Functional Materials, 2014, 24(38), 6023. 32 Wang T, Handschuh-Wang S, Huang L, et al. Langmuir, 2018, 34(4), 1419. 33 Liu C R, Sun J, Li J, et al. Scientific Reports, 2017, 7, 7552. 34 Xu W, Lan Z, Peng B L, et al. Scientific Reports, 2016, 6, 18836. 35 Dong J, Dong H, Jin Y L, et al. Advanced Materials Interfaces, 2018, 5(16), 1800202. 36 Dhiman S, Jayaprakash K S, Iqbal R, et al. Langmuir, 2018, 34(41), 12359. 37 Li E Q, Thoroddsen S T. Physics of Fluids, 2013, 25(5), 052105. 38 Mahmood A, Chen S, Chen C L, et al. Journal of Physical Chemistry C, 2018, 122(26), 14937. 39 Ju J, Xiao K, Yao X, et al. Advanced Materials, 2013, 25(41), 5937. 40 Michielsen S, Zhang J L, Du J M, et al. Langmuir, 2011, 27(19), 11867. 41 Yu C L, Li C X, Gao C, et al. ACS Nano, 2018, 12(6), 5149. 42 Li C X, Li N, Zhang X S, et al. Angewandte Chemie-International Edition, 2016, 55(48), 14988. 43 Zhang P F, Chen H W, Li L, et al. ACS Applied Materials & Interfaces, 2017, 9(6), 5645. 44 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65. 45 Rothstein J P. Annual Review of Fluid Mechanics, 2010, 42, 89. 46 Vogler E A. Advances in Colloid and Interface Science, 1998, 74(1), 69. 47 Wenzel R N. Industrial and Engineering Chemistry, 1936, 28(8), 988. 48 Feng L, Zhang Y A, Xi J M, et al. Langmuir, 2008, 24(8), 4114. 49 Bhushan B, Her E K. Langmuir, 2010, 26(11), 8207. 50 Liu K S, Du J X, Wu J T, et al. Nanoscale, 2012, 4(3), 768. 51 Autumn K, Sitti M, Liang Y C A, et al. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19), 12252. 52 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 0546. 53 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1. 54 Neinhuis C, Barthlott W. Annals of Botany, 1997, 79(6), 667. 55 Pierre-Gilles de Gennes, Francoise Brochard-Wyart, David Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, USA, 2004. 56 Furmidge C G. Journal of Colloid Science, 1962, 17(4), 309. 57 Zheng Y M, Gao X F, Jiang L. Soft Matter, 2007, 3(2),178. 58 Prakash M, Quéré D, Bush J W M. Science, 2008, 320(5878), 931. 59 Liu C C, Xue Y, Chen Y, et al. Scientific Reports, 2015, 5, 17757. 60 Wong T S, Kang S H, Tang S K Y, et al. Nature, 2011, 477(7365), 443. 61 Anand S, Paxson A T, Dhiman R, et al. ACS Nano, 2012, 6(11), 10122. 62 Zheng Y M, Jiang L, Wang J X, et al. Applied Physics Letters, 2008, 93(9), 094107. 63 Bai F, Wu J T, Gong G M, et al. Advanced Science, 2015, 2(7), 1500047. 64 Guo L, Tang G H. International Journal of Heat and Mass Transfer, 2015, 84, 198. 65 Yu C M, Cao M Y, Dong Z C, et al. Advanced Functional Materials, 2016, 26(19), 3236. 66 Duan J A, Dong X R, Yin K, et al. Applied Physics Letters, 2018, 113(20), 203704. 67 Miguel S, Hehn A, Bourgaud F. Journal of Biotechnology, 2018, 265, 109. 68 Ellison A M. Plant Biology, 2006, 8(6), 740. 69 Moran J A, Clarke C M. Plant Signaling & Behavior, 2010, 5(6), 644. 70 Adlassnig W, Koller-Peroutka M, Bauer S, et al. Plant Journal, 2012, 71(2), 303. 71 Buch F, Rott M, Rottloff S, et al. Annals of Botany, 2013, 111(3), 375. 72 Bauer U, Federle W. Plant Signaling & Behavior, 2009, 4(11), 1019. 73 Bauer U, Bohn H F, Federle W. Proceedings of the Royal Society B-Biological Sciences, 2008, 275(1632), 259. 74 Zhang P F, Zhang L W, Chen H W, et al. Advanced Materials, 2017, 29(45), 1702995. 75 Bohn H F, Federle W. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39), 14138. 76 Gaume L, Perret P, Gorb E, et al. Arthropod Structure & Development, 2004, 33, 103. 77 Oliver J F, Huh C, Mason S G. Journal of Colloid and Interface Science, 1977, 59(3), 568. 78 Li S P, Liu J L, Hou J. Scientific Reports, 2016, 6, 37888. 79 Damak M, Mahmoudi S R, Hyder M N, et al. Nature Communications, 2016, 7, 1. 80 Li J Q, Zheng H X, Yang Z B, et al. Communications Physics, 2018, 1(1), 35. 81 Chen H W, Zhang L W, Zhang Y, et al. Journal of Materials Chemistry A, 2017, 5(15), 6914. 82 Liu T L, Kim C J. Science, 2014, 346(6213), 1096. 83 Chen H W, Zhang L W, Zhang P F, et al. Small, 2017, 13(4), 1601676. 84 Dong M, Chatzis I. Journal of Colloid and Interface Science, 1995, 172(2), 278. 85 Ponomarenko A, Quere D, Clanet C. Journal of Fluid Mechanics, 2011, 666, 146. 86 Higuera F J, Medina A, Linan A. Physics of Fluids, 2008, 20(10), 102102. 87 Wang Z J, Chang C C, Hong S J, et al. Langmuir, 2012, 28(49), 16917. 88 Quere D. Europhysics Letters, 1990, 13(8), 721. 89 Washburn E W. Physical Review, 1921, 17(3), 273. 90 Lucas R.Colloid and Polymer Science, 1918, 23(1), 15. 91 Ransohoff T C, Radke C J. Journal of Colloid and Interface Science, 1988, 121(2), 392. 92 Omenetto F G, Kaplan D L. Science, 2010, 329(5991), 528. 93 Porter D, Vollrath F. Advanced Materials,2009, 21(4), 487. 94 Rammensee S, Slotta U, Scheibel T, et al. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(18), 6590. 95 Becker N, Oroudjev E, Mutz S, et al. Nature Materials, 2003, 2(4), 278. 96 Peters H M. Zoomorphology, 1984, 104(2), 96. 97 Ju J, Zheng Y M, Jiang L. Accounts of Chemical Research, 2014, 47(8), 2342. 98 Bai H, Ju J, Zheng Y M, et al. Advanced Materials, 2012, 24(20), 2786. 99 Chaudhury M K, Whitesides G M. Science, 1992, 256(5063), 1539. 100 Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504), 633. 101 Daniel S, Sircar S, Gliem J, et al. Langmuir, 2004, 20(10), 4085. 102 Lorenceau E, Quere D. Journal of Fluid Mechanics, 2004, 510, 29. 103 Zhang S N, Huang J Y, Chen Z, et al. Journal of Materials Chemistry A, 2019, 7(1), 38. 104 Gau H, Herminghaus S, Lenz P, et al. Science, 1999, 283(5398), 46. 105 Yoshimitsu Z, Nakajima A, Watanabe T, et al. Langmuir, 2002, 18(15), 5818. 106 Tian Y, Zhu P G, Tang X, et al. Nature Communications, 2017, 8, 1080. 107 Bai H, Sun R Z, Ju J, et al. Small, 2011, 7(24), 3429. 108 Tian X L, Bai H, Zheng Y M, et al. Advanced Functional Materials, 2011, 21(8), 1398. 109 Chen Y, Wang L, Xue Y, et al. Scientific Reports, 2013, 3, 2927. 110 Hou Y P, Chen Y, Xue Y, et al. Soft Matter, 2012, 8(44), 11236. 111 Feng S L, Hou Y P, Xue Y, et al. Soft Matter, 2013, 9(39), 9294. 112 Huang Z B, Chen Y, Zheng Y M, et al. Soft Matter, 2011, 7(19), 9468. 113 Bai H, Ju J, Sun R Z, et al. Advanced Materials, 2011, 23(32), 3708. 114 Chen Y, Wang L, Xue Y, et al. Soft Matter, 2012, 8(45), 11450. 115 Bai H, Tian X L, Zheng Y M, et al. Advanced Materials, 2010, 22(48), 5521. 116 Tian X L, Chen Y, Zheng Y M, et al. Advanced Materials, 2011, 23(46), 5486. 117 Hou Y P, Chen Y, Xue Y, et al. Langmuir, 2012, 28(10), 4737. 118 Hou Y P, Gao L C, Feng S L, et al. Chemical Communications, 2013, 49(46), 5253. 119 Dong H, Zheng Y M, Wang N, et al. Advanced Materials Interfaces, 2016, 3(11), 1500831. 120 Tian Y, Wang L Q. Journal of Materials Chemistry A, 2018, 6(39), 18766. 121 Moller G, Harke M, Motschmann H, et al. Langmuir, 1998, 14(18), 4955. 122 Chen L, Liu M J, Lin L, et al. Soft Matter, 2010, 6(12), 2708. 123 Hernandez-Guerrero M, Min E, Barner-Kowollik C, et al. Journal of Materials Chemistry, 2008, 18(39), 4718. 124 Siewierski L M, Brittain W J, Petrash S, et al. Langmuir, 1996, 12(24), 5838. 125 Jiang W H, Wang G J, He Y N, et al. Chemical Communications, 2005,28, 3550. 126 Sun T L, Song W L, Jiang L. Chemical Communications, 2005, 13, 1723. 127 Feng J H, Cerniglia C E, Chen H Z. Frontiers in Bioscience (Elite Edition), 2012, 4, 568. 128 Xu L B, Chen W, Mulchandani A, et al. Angewandte Chemie-International Edition, 2005, 44(37), 6009. 129 Agranovski I E, Braddock R D. Aiche Journal, 1998, 44(12), 2784. 130 Agranovski I E, Braddock R D. Aiche Journal, 1998, 44(12), 2775. 131 Lorenceau E, Clanet C, Quere D. Journal of Colloid and Interface Science, 2004, 279(1), 192. 132 Carroll B J. Langmuir, 1986, 2(2), 248. 133 Carroll B J. Journal of Applied Physics, 1991, 70(1), 493. 134 Bixler G D, Bhushan B. Nanoscale, 2013, 5(17), 7685. 135 Bixler G D, Bhushan B. Critical Reviews in Solid State and Materials Sciences, 2015, 40(1), 1. 136 Bixler G D, Bhushan B. Nanoscale, 2014, 6(1), 76. 137 Bixler G D, Bhushan B. Soft Matter, 2012, 8(44), 11271. 138 Fang Y, Sun G, Wang T Q, et al. Chinese Science Bulletin, 2007, 52(5), 711. 139 Sun G, Fang Y, Cong Q, et al. Journal of Bionic Engineering, 2009, 6(1), 71. 140 Wagner T, Neinhuis C, Barthlott W. Acta Zoologica, 1996, 77(3), 213. 141 Quere D, Lafuma A, Bico J. Nanotechnology, 2003, 14(10), 1109. 142 Tourkine P, Le Merrer M, Quere D. Langmuir, 2009, 25(13), 7214. 143 Cao L L, Jones A K, Sikka V K, et al. Langmuir, 2009, 25(21), 12444. 144 Mishchenko L, Hatton B, Bahadur V, et al. ACS Nano, 2010, 4(12), 7699. 145 Wanasekara N D, Chalivendra V B. Soft Matter, 2011, 7(2), 373. 146 Wagner T, Neinhuis C, Barthlott W. Acta Zoologica, 1996, 77(3), 213. 147 Li P L, Zhang B, Zhao H B, et al. Langmuir, 2018, 34(41), 12482. 148 Mei H, Luo D, Guo P, et al. Soft Matter, 2011, 7(22), 10569. 149 Srygley R B, Thomas A L R. Nature, 2002, 420(6916), 660. 150 Liu C C, Ju J, Zheng Y M, et al. ACS Nano, 2014, 8(2), 1321. 151 Daniel S, Chaudhury M K, de Gennes P G. Langmuir, 2005, 21(9), 4240. 152 Hao C L, Li J, Liu Y, et al. Nature Communnications, 2015,6,7986. 153 Gauthier A, Symon S, Clanet C, et al. Nature Communications, 2015, 6, 8001. 154 Bird J C, Dhiman R, Kwon H M, et al. Nature, 2013, 503(7476), 385. 155 Wang H J, Wang W Y, Wang H, et al. ACS Applied Materials & Interfaces, 2018, 10(38), 32792. 156 Yang J T, Yang Z H, Chen C Y, et al. Langmuir, 2008, 24(17), 9889. 157 Fang G P, Li W, Wang X F, et al. Langmuir, 2008, 24(20), 11651. 158 Zhu H, Guo Z G, Liu W M. Chemical Communications, 2016, 52(20), 3863. 159 Hauksbee F. Philosophical Transactions of the Royal Society of London, 1710, 27(336), 539. 160 Taylor B. Philosophical Transactions of the Royal Society of London, 1710, 27(336), 538. 161 Concus P, Finn R. Proceedings of the National Academy of Sciences of the United States of America, 1969, 63(2), 292. 162 Liu J L, Li S P. European Physical Journal E, 2019, 42(1), 1. 163 Deramos A L, Cerro R L. Chemical Engineering Science, 1994, 49(14), 2395. 164 Dorrer C, Ruhe J. Langmuir, 2008, 24(12), 6154. 165 Zhai L, Berg M C, Cebeci F C, et al. Nano Letters, 2006, 6(6), 1213. 166 Norgaard T, Dacke M. Frontiers in Zoology, 2010, 7, 23. 167 Xu Q F, Wang J N, Smith I H, et al. Applied Physics Letters, 2008, 93(23), 233112. 168 Yang X L, Liu X, Li J, et al. Micro & Nano Letters, 2015, 10(7), 343. 169 Wang S, Wang C, Peng Z L, et al. Journal Physical Chemistry C, 2019, 123(3), 1798. 170 Hu H B, Yu S X, Song D. Langmuir, 2016, 32(29), 7339. 171 Xu C, Feng R, Song F, et al. Chemical Engineering Journal, 2018, 352, 722. 172 Li J Q, Zhou X F, Li J, et al. Science Advances, 2017, 3(10), eaao3530. 173 Weislogel M M, Lichter S. Journal of Fluid Mechanics, 1998, 373, 349. 174 Chaudhury M K, Chaudhury A. Soft Matter, 2005, 1(6), 431.