Please wait a minute...
材料导报  2020, Vol. 34 Issue (13): 13175-13193    https://doi.org/10.11896/cldb.19070008
  高分子与聚合物基复合材料 |
固体表面液滴定向运动行为研究进展
胡海豹, 曹刚, 张梦卓, 杜鹏, 黄潇
西北工业大学航海学院, 西安 710072
Research Advance on Directional Motion Behavior of Solid Surface Droplets
HU Haibao, CAO Gang, ZHANG Mengzhuo, DU Peng, HUANG Xiao
School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China
下载:  全 文 ( PDF ) ( 27776KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液滴在固体表面定向运动极具研究价值,目前被广泛应用于水收集、油水分离、微流控、自清洁等领域,已成为表界面领域的研究热点。同时,液滴定向运动行为研究对理解液体与固体表面之间的作用机制具有重要意义。
然而,目前对液滴定向运动的研究主要集中在宏观尺度观测与分析方面,缺乏对基本原理的深入探索,并且对实现液滴定向运动的基本条件认识不足。同时,人造仿生材料存在工艺复杂、成本高昂,以及运动距离相对较短、运动速度相对较小等缺点,限制了其适用范围。另外,虽然广大学者在液滴定向运动行为研究方面已经取得了较多成果,比如制得微型混合器、流体二极管等,但这些研究仅局限在实验室阶段,如何将其广泛应用于日常生活仍有待进一步研究。
目前,学者们从液滴润湿性基本原理出发,发现仙人掌、猪笼草、瓶子草、蜘蛛丝、蝴蝶等天然材料表面可以实现液滴定向运动,其中,瓶子草绒毛表面液滴定向运动速度高达(1 1738±715) μm·s-1。在此基础上,广大学者通过静电纺丝、电化学腐蚀、光刻法、浸涂法等方式对仙人掌刺、猪笼草口缘、瓶子草绒毛、蜘蛛丝等做了进一步的仿生研究,其中仿蜘蛛丝实现了液滴的可逆运动和高效水收集。此外,受天然材料表面液滴定向运动启发,有学者研制了可实现液滴快速、长距离、方向可控运动的拓扑流体二极管,而结构简单的箭头状微结构更是为实际应用提供了可能。
本文全面综述了近10年国内外学者在仙人掌、猪笼草、瓶子草、蜘蛛丝及蝴蝶等天然材料表面液滴定向运动行为方面的研究进展,从表面能梯度、Laplace压力梯度及毛细力等角度分析了固体表面液滴定向运动的基本原理,同时展示了国内外在仿生定向运动表面的典型研究实例。最后,对该领域未来的研究工作提出了一些建议。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡海豹
曹刚
张梦卓
杜鹏
黄潇
关键词:  液滴  固体表面  定向运动  仿生    
Abstract: The directional motion of droplets on solid surfaces is of great research value and has been widely used in water collection, oil-water separation, microfluidics, etc., which has become a research hotspot in the field of surface interface. At the same time, the study of droplet orientation motion behavior is of great significance for understanding the mechanism of action between liquid and solid surfaces.
However, the current research on the directional movement of droplets mainly focuses on macroscopic scale observation and analysis, lacks in-depth exploration of the basic principles and lacks understanding of the basic conditions for achieving droplet directional motion. At the same time, the current artificial biomimetic materials are complicated and costly, and their relatively short moving distance and relatively small moving speed limit their application range. In addition, although the majority of scholars have made great achievements in the research of droplet directional motion behavior, such as micro-mixers, fluid diodes, etc., these studies are only limited to the “laboratory” stage, applying it widely to daily life needs further research.
Fortunately, the current scholars have started from the basic principle of droplet wetting and found that the surface of natural materials such as cactus, Nepenthes alata, Sarracenia,spider silk and butterfly,etc. can realize the directional movement of droplets. And the directional movement speed of droplets on the surface of Sarracenia trichome is up to (1 1738±715) μm·s-1. On this basis, the majority of scholars have made further biomimetic research on cactus spine, Nepenthes alata peristome, Sarracenia trichome,spider silk, etc. by electrospinning, electrochemical etching, photolithography, dip-coating, etc.,and the biomimetic spider silk achieves reversible movement of the droplets and efficient water collection. In addition, inspired by the directional movement of droplets on the surface of natural materials, some scholars have developed topological fluid diodes that realize rapid, long-distance and direction-controllable movement of droplets. The simple arrow-shaped microstructures provide a possibility for practical applications.
This paper comprehensively reviews the recent research progress of domestic and foreign scholars on the surface directional movement beha-vior of natural materials such as cactus, Nepenthes alata, Sarracenia, spider silk and butterfly. The basic principle of directional movement of so-lid surface droplets is analyzed from the angle of force, and a typical example of bionic self-orienting surface at home and abroad is demonstrated. Finally, some suggestions for future research work are presented.
Key words:  droplet    solid surface    directional motion    bionic
                    发布日期:  2020-06-24
ZTFLH:  O647.11  
  O647.5  
基金资助: 国家自然科学基金(51879218; 51679203);中央高校基本科研业务费专项资金(3102018gxc007);国防科技工业海洋防务技术创新中心创新基金;西北工业大学研究生创意创新种子基金(CX2020062)
通讯作者:  huhaibao@nwpu.edu.cn   
作者简介:  胡海豹, 教授, 博士研究生导师, 2005年 4 月在西北工业大学航海学院参加工作。西北工业大学学士 (2002)、硕士 (2005)、工学博士 (2009)。曾入选西工大“翱翔之星”、“优秀青年教师”、“优秀研究生指导教师”。长期致力于特种表面力学行为与机制研究工作,累计获得省部级科技奖2项,发表学术论文50余篇,授权发明专利10多项。
引用本文:    
胡海豹, 曹刚, 张梦卓, 杜鹏, 黄潇. 固体表面液滴定向运动行为研究进展[J]. 材料导报, 2020, 34(13): 13175-13193.
HU Haibao, CAO Gang, ZHANG Mengzhuo, DU Peng, HUANG Xiao. Research Advance on Directional Motion Behavior of Solid Surface Droplets. Materials Reports, 2020, 34(13): 13175-13193.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070008  或          http://www.mater-rep.com/CN/Y2020/V34/I13/13175
1 Ju J, Bai H, Zheng Y M, et al. Nature Communications, 2012, 3, 1247.
2 Zheng Y M, Bai H, Huang Z B, et al. Nature, 2010, 463(7281), 640.
3 Parker A R, Lawrence C R. Nature, 2001, 414(6859), 33.
4 Chen H W, Ran T, Gan Y, et al. Nature Materials, 2018, 17(10), 935.
5 Chen H W, Zhang P F, Zhang L W, et al. Nature, 2016, 532(7597), 85.
6 Goodwyn P P, Maezono Y, Hosoda N, et al. Naturwissenschaften, 2009, 96(7), 781.
7 Jiang J K, Gao J, Zhang H D, et al. Proceedings of the National Academy of Sciences of the Unieted States of America, 2019, 116(7), 2482.
8 Wang B, Guo Z G. Applied Physics Letteers, 2013, 103(6), 063704.
9 Li C X, Wu L, Yu C L, et al. Angewandte Chemie-International Edition, 2017, 56(44), 13623.
10 Li K, Ju J, Xue Z X, et al. Nature Communications, 2013, 4, 2276.
11 Liang L H, Wang W, Chen J J, et al. Materials, 2019, 12(7), 1043.
12 Ma H Y, Cao M Y, Zhang C H, et al. Advanced Functional Materials, 2018, 28(7), 1705091.
13 Kang E, Shin S J, Lee K H, et al. Lab on a Chip, 2010, 10(14), 1856.
14 Shin S J, Park J Y, Lee J Y, et al. Langmuir, 2007, 23(17), 9104.
15 Kang E, Jeong G S, Choi Y Y, et al. Nature Materials, 2011, 10(11), 877.
16 Ju J, Yao X, Yang S, et al. Advanced Functional Materials, 2014, 24(44), 6933.
17 Wang X K, Zeng J, Yu X Q, et al. Journal of Materials Chemistry A, 2019, 7(10), 5426.
18 Zhong L S, Feng J, Guo Z G. Journal of Materials Chemistry A, 2019, 7(14), 8405.
19 Hu R J, Wang N, Hou L L, et al. Journal of Materials Chemistry A, 2019, 7(1), 124.
20 Park K C, Kim P, Grinthal A, et al. Nature, 2016, 531(7592), 78.
21 Cui Y, Li D W, Bai H. Industrial & Engineering Chemistry Research, 2017, 56(17), 4887.
22 Zhao L, Song C, Zhang M X, et al. Chemical Communications, 2014, 50(73), 10651.
23 Ahmed R, Ji X C, Atta R M H, et al. RSC Advances, 2018, 8(48), 27111.
24 Li Q S, Zeng Q, Shi L, et al. Journal of Materials Chemistry C, 2016, 4(9), 1752.
25 Kang S H, Tai T Y, Fang T H. Current Applied Physics, 2010, 10(2), 625.
26 Byun D, Hong J, Saputra, et al. Journal of Bionic Engineering, 2009, 6(1), 63.
27 Gu Z Z, Uetsuka H, Takahashi K, et al. Angewandte Chemie-International Edition, 2003, 42(8), 894.
28 Zhou H, Wang H X, Niu H T, et al. Scientific Reports, 2013, 3, 2964.
29 Wang H X, Zhou H, Yang W D, et al. ACS Applied Materials & Interfaces, 2015, 7(41), 22874.
30 Li J, Guo Z G. Nanoscale, 2018, 10(29), 13814.
31 Tian X L, Jin H, Sainio J, et al. Advanced Functional Materials, 2014, 24(38), 6023.
32 Wang T, Handschuh-Wang S, Huang L, et al. Langmuir, 2018, 34(4), 1419.
33 Liu C R, Sun J, Li J, et al. Scientific Reports, 2017, 7, 7552.
34 Xu W, Lan Z, Peng B L, et al. Scientific Reports, 2016, 6, 18836.
35 Dong J, Dong H, Jin Y L, et al. Advanced Materials Interfaces, 2018, 5(16), 1800202.
36 Dhiman S, Jayaprakash K S, Iqbal R, et al. Langmuir, 2018, 34(41), 12359.
37 Li E Q, Thoroddsen S T. Physics of Fluids, 2013, 25(5), 052105.
38 Mahmood A, Chen S, Chen C L, et al. Journal of Physical Chemistry C, 2018, 122(26), 14937.
39 Ju J, Xiao K, Yao X, et al. Advanced Materials, 2013, 25(41), 5937.
40 Michielsen S, Zhang J L, Du J M, et al. Langmuir, 2011, 27(19), 11867.
41 Yu C L, Li C X, Gao C, et al. ACS Nano, 2018, 12(6), 5149.
42 Li C X, Li N, Zhang X S, et al. Angewandte Chemie-International Edition, 2016, 55(48), 14988.
43 Zhang P F, Chen H W, Li L, et al. ACS Applied Materials & Interfaces, 2017, 9(6), 5645.
44 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65.
45 Rothstein J P. Annual Review of Fluid Mechanics, 2010, 42, 89.
46 Vogler E A. Advances in Colloid and Interface Science, 1998, 74(1), 69.
47 Wenzel R N. Industrial and Engineering Chemistry, 1936, 28(8), 988.
48 Feng L, Zhang Y A, Xi J M, et al. Langmuir, 2008, 24(8), 4114.
49 Bhushan B, Her E K. Langmuir, 2010, 26(11), 8207.
50 Liu K S, Du J X, Wu J T, et al. Nanoscale, 2012, 4(3), 768.
51 Autumn K, Sitti M, Liang Y C A, et al. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(19), 12252.
52 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 0546.
53 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1.
54 Neinhuis C, Barthlott W. Annals of Botany, 1997, 79(6), 667.
55 Pierre-Gilles de Gennes, Francoise Brochard-Wyart, David Quéré. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves, Springer, USA, 2004.
56 Furmidge C G. Journal of Colloid Science, 1962, 17(4), 309.
57 Zheng Y M, Gao X F, Jiang L. Soft Matter, 2007, 3(2),178.
58 Prakash M, Quéré D, Bush J W M. Science, 2008, 320(5878), 931.
59 Liu C C, Xue Y, Chen Y, et al. Scientific Reports, 2015, 5, 17757.
60 Wong T S, Kang S H, Tang S K Y, et al. Nature, 2011, 477(7365), 443.
61 Anand S, Paxson A T, Dhiman R, et al. ACS Nano, 2012, 6(11), 10122.
62 Zheng Y M, Jiang L, Wang J X, et al. Applied Physics Letters, 2008, 93(9), 094107.
63 Bai F, Wu J T, Gong G M, et al. Advanced Science, 2015, 2(7), 1500047.
64 Guo L, Tang G H. International Journal of Heat and Mass Transfer, 2015, 84, 198.
65 Yu C M, Cao M Y, Dong Z C, et al. Advanced Functional Materials, 2016, 26(19), 3236.
66 Duan J A, Dong X R, Yin K, et al. Applied Physics Letters, 2018, 113(20), 203704.
67 Miguel S, Hehn A, Bourgaud F. Journal of Biotechnology, 2018, 265, 109.
68 Ellison A M. Plant Biology, 2006, 8(6), 740.
69 Moran J A, Clarke C M. Plant Signaling & Behavior, 2010, 5(6), 644.
70 Adlassnig W, Koller-Peroutka M, Bauer S, et al. Plant Journal, 2012, 71(2), 303.
71 Buch F, Rott M, Rottloff S, et al. Annals of Botany, 2013, 111(3), 375.
72 Bauer U, Federle W. Plant Signaling & Behavior, 2009, 4(11), 1019.
73 Bauer U, Bohn H F, Federle W. Proceedings of the Royal Society B-Biological Sciences, 2008, 275(1632), 259.
74 Zhang P F, Zhang L W, Chen H W, et al. Advanced Materials, 2017, 29(45), 1702995.
75 Bohn H F, Federle W. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39), 14138.
76 Gaume L, Perret P, Gorb E, et al. Arthropod Structure & Development, 2004, 33, 103.
77 Oliver J F, Huh C, Mason S G. Journal of Colloid and Interface Science, 1977, 59(3), 568.
78 Li S P, Liu J L, Hou J. Scientific Reports, 2016, 6, 37888.
79 Damak M, Mahmoudi S R, Hyder M N, et al. Nature Communications, 2016, 7, 1.
80 Li J Q, Zheng H X, Yang Z B, et al. Communications Physics, 2018, 1(1), 35.
81 Chen H W, Zhang L W, Zhang Y, et al. Journal of Materials Chemistry A, 2017, 5(15), 6914.
82 Liu T L, Kim C J. Science, 2014, 346(6213), 1096.
83 Chen H W, Zhang L W, Zhang P F, et al. Small, 2017, 13(4), 1601676.
84 Dong M, Chatzis I. Journal of Colloid and Interface Science, 1995, 172(2), 278.
85 Ponomarenko A, Quere D, Clanet C. Journal of Fluid Mechanics, 2011, 666, 146.
86 Higuera F J, Medina A, Linan A. Physics of Fluids, 2008, 20(10), 102102.
87 Wang Z J, Chang C C, Hong S J, et al. Langmuir, 2012, 28(49), 16917.
88 Quere D. Europhysics Letters, 1990, 13(8), 721.
89 Washburn E W. Physical Review, 1921, 17(3), 273.
90 Lucas R.Colloid and Polymer Science, 1918, 23(1), 15.
91 Ransohoff T C, Radke C J. Journal of Colloid and Interface Science, 1988, 121(2), 392.
92 Omenetto F G, Kaplan D L. Science, 2010, 329(5991), 528.
93 Porter D, Vollrath F. Advanced Materials,2009, 21(4), 487.
94 Rammensee S, Slotta U, Scheibel T, et al. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(18), 6590.
95 Becker N, Oroudjev E, Mutz S, et al. Nature Materials, 2003, 2(4), 278.
96 Peters H M. Zoomorphology, 1984, 104(2), 96.
97 Ju J, Zheng Y M, Jiang L. Accounts of Chemical Research, 2014, 47(8), 2342.
98 Bai H, Ju J, Zheng Y M, et al. Advanced Materials, 2012, 24(20), 2786.
99 Chaudhury M K, Whitesides G M. Science, 1992, 256(5063), 1539.
100 Daniel S, Chaudhury M K, Chen J C. Science, 2001, 291(5504), 633.
101 Daniel S, Sircar S, Gliem J, et al. Langmuir, 2004, 20(10), 4085.
102 Lorenceau E, Quere D. Journal of Fluid Mechanics, 2004, 510, 29.
103 Zhang S N, Huang J Y, Chen Z, et al. Journal of Materials Chemistry A, 2019, 7(1), 38.
104 Gau H, Herminghaus S, Lenz P, et al. Science, 1999, 283(5398), 46.
105 Yoshimitsu Z, Nakajima A, Watanabe T, et al. Langmuir, 2002, 18(15), 5818.
106 Tian Y, Zhu P G, Tang X, et al. Nature Communications, 2017, 8, 1080.
107 Bai H, Sun R Z, Ju J, et al. Small, 2011, 7(24), 3429.
108 Tian X L, Bai H, Zheng Y M, et al. Advanced Functional Materials, 2011, 21(8), 1398.
109 Chen Y, Wang L, Xue Y, et al. Scientific Reports, 2013, 3, 2927.
110 Hou Y P, Chen Y, Xue Y, et al. Soft Matter, 2012, 8(44), 11236.
111 Feng S L, Hou Y P, Xue Y, et al. Soft Matter, 2013, 9(39), 9294.
112 Huang Z B, Chen Y, Zheng Y M, et al. Soft Matter, 2011, 7(19), 9468.
113 Bai H, Ju J, Sun R Z, et al. Advanced Materials, 2011, 23(32), 3708.
114 Chen Y, Wang L, Xue Y, et al. Soft Matter, 2012, 8(45), 11450.
115 Bai H, Tian X L, Zheng Y M, et al. Advanced Materials, 2010, 22(48), 5521.
116 Tian X L, Chen Y, Zheng Y M, et al. Advanced Materials, 2011, 23(46), 5486.
117 Hou Y P, Chen Y, Xue Y, et al. Langmuir, 2012, 28(10), 4737.
118 Hou Y P, Gao L C, Feng S L, et al. Chemical Communications, 2013, 49(46), 5253.
119 Dong H, Zheng Y M, Wang N, et al. Advanced Materials Interfaces, 2016, 3(11), 1500831.
120 Tian Y, Wang L Q. Journal of Materials Chemistry A, 2018, 6(39), 18766.
121 Moller G, Harke M, Motschmann H, et al. Langmuir, 1998, 14(18), 4955.
122 Chen L, Liu M J, Lin L, et al. Soft Matter, 2010, 6(12), 2708.
123 Hernandez-Guerrero M, Min E, Barner-Kowollik C, et al. Journal of Materials Chemistry, 2008, 18(39), 4718.
124 Siewierski L M, Brittain W J, Petrash S, et al. Langmuir, 1996, 12(24), 5838.
125 Jiang W H, Wang G J, He Y N, et al. Chemical Communications, 2005,28, 3550.
126 Sun T L, Song W L, Jiang L. Chemical Communications, 2005, 13, 1723.
127 Feng J H, Cerniglia C E, Chen H Z. Frontiers in Bioscience (Elite Edition), 2012, 4, 568.
128 Xu L B, Chen W, Mulchandani A, et al. Angewandte Chemie-International Edition, 2005, 44(37), 6009.
129 Agranovski I E, Braddock R D. Aiche Journal, 1998, 44(12), 2784.
130 Agranovski I E, Braddock R D. Aiche Journal, 1998, 44(12), 2775.
131 Lorenceau E, Clanet C, Quere D. Journal of Colloid and Interface Science, 2004, 279(1), 192.
132 Carroll B J. Langmuir, 1986, 2(2), 248.
133 Carroll B J. Journal of Applied Physics, 1991, 70(1), 493.
134 Bixler G D, Bhushan B. Nanoscale, 2013, 5(17), 7685.
135 Bixler G D, Bhushan B. Critical Reviews in Solid State and Materials Sciences, 2015, 40(1), 1.
136 Bixler G D, Bhushan B. Nanoscale, 2014, 6(1), 76.
137 Bixler G D, Bhushan B. Soft Matter, 2012, 8(44), 11271.
138 Fang Y, Sun G, Wang T Q, et al. Chinese Science Bulletin, 2007, 52(5), 711.
139 Sun G, Fang Y, Cong Q, et al. Journal of Bionic Engineering, 2009, 6(1), 71.
140 Wagner T, Neinhuis C, Barthlott W. Acta Zoologica, 1996, 77(3), 213.
141 Quere D, Lafuma A, Bico J. Nanotechnology, 2003, 14(10), 1109.
142 Tourkine P, Le Merrer M, Quere D. Langmuir, 2009, 25(13), 7214.
143 Cao L L, Jones A K, Sikka V K, et al. Langmuir, 2009, 25(21), 12444.
144 Mishchenko L, Hatton B, Bahadur V, et al. ACS Nano, 2010, 4(12), 7699.
145 Wanasekara N D, Chalivendra V B. Soft Matter, 2011, 7(2), 373.
146 Wagner T, Neinhuis C, Barthlott W. Acta Zoologica, 1996, 77(3), 213.
147 Li P L, Zhang B, Zhao H B, et al. Langmuir, 2018, 34(41), 12482.
148 Mei H, Luo D, Guo P, et al. Soft Matter, 2011, 7(22), 10569.
149 Srygley R B, Thomas A L R. Nature, 2002, 420(6916), 660.
150 Liu C C, Ju J, Zheng Y M, et al. ACS Nano, 2014, 8(2), 1321.
151 Daniel S, Chaudhury M K, de Gennes P G. Langmuir, 2005, 21(9), 4240.
152 Hao C L, Li J, Liu Y, et al. Nature Communnications, 2015,6,7986.
153 Gauthier A, Symon S, Clanet C, et al. Nature Communications, 2015, 6, 8001.
154 Bird J C, Dhiman R, Kwon H M, et al. Nature, 2013, 503(7476), 385.
155 Wang H J, Wang W Y, Wang H, et al. ACS Applied Materials & Interfaces, 2018, 10(38), 32792.
156 Yang J T, Yang Z H, Chen C Y, et al. Langmuir, 2008, 24(17), 9889.
157 Fang G P, Li W, Wang X F, et al. Langmuir, 2008, 24(20), 11651.
158 Zhu H, Guo Z G, Liu W M. Chemical Communications, 2016, 52(20), 3863.
159 Hauksbee F. Philosophical Transactions of the Royal Society of London, 1710, 27(336), 539.
160 Taylor B. Philosophical Transactions of the Royal Society of London, 1710, 27(336), 538.
161 Concus P, Finn R. Proceedings of the National Academy of Sciences of the United States of America, 1969, 63(2), 292.
162 Liu J L, Li S P. European Physical Journal E, 2019, 42(1), 1.
163 Deramos A L, Cerro R L. Chemical Engineering Science, 1994, 49(14), 2395.
164 Dorrer C, Ruhe J. Langmuir, 2008, 24(12), 6154.
165 Zhai L, Berg M C, Cebeci F C, et al. Nano Letters, 2006, 6(6), 1213.
166 Norgaard T, Dacke M. Frontiers in Zoology, 2010, 7, 23.
167 Xu Q F, Wang J N, Smith I H, et al. Applied Physics Letters, 2008, 93(23), 233112.
168 Yang X L, Liu X, Li J, et al. Micro & Nano Letters, 2015, 10(7), 343.
169 Wang S, Wang C, Peng Z L, et al. Journal Physical Chemistry C, 2019, 123(3), 1798.
170 Hu H B, Yu S X, Song D. Langmuir, 2016, 32(29), 7339.
171 Xu C, Feng R, Song F, et al. Chemical Engineering Journal, 2018, 352, 722.
172 Li J Q, Zhou X F, Li J, et al. Science Advances, 2017, 3(10), eaao3530.
173 Weislogel M M, Lichter S. Journal of Fluid Mechanics, 1998, 373, 349.
174 Chaudhury M K, Chaudhury A. Soft Matter, 2005, 1(6), 431.
[1] 钏定泽, 颜廷亭, 刘金坤, 刘继涛, 陈希亮, 陈庆华. 羟基磷灰石晶体仿生阵列的制备研究进展[J]. 材料导报, 2020, 34(9): 9069-9074.
[2] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[3] 朱武青, 全海燕, 彭叔森, 张敏, 陈东初, 户华文. 基于天然贻贝仿生制备聚多巴胺改性石墨烯基功能材料及其水体环境修复应用研究进展[J]. 材料导报, 2020, 34(11): 11009-11021.
[4] 陈世尧, 袁光明, 杨涛, 夏名出, 牟明明. 壳聚糖-SiO2仿生物矿化协同改性尾巨桉木材[J]. 材料导报, 2020, 34(10): 10182-10186.
[5] 阮世超, 罗丹丹, 郝亚, 白雪, 陈岑. 氧化铱/聚多巴胺/层粘连蛋白仿生涂层的制备[J]. 材料导报, 2018, 32(24): 4351-4356.
[6] 洪佳丹,何丽泳,杨慧方,韦路希,庞栋文,邓春林. 基质囊泡及其在骨矿化过程中的作用[J]. 《材料导报》期刊社, 2018, 32(11): 1827-1833.
[7] 阚小清,丁 军,余 超,邓承继,祝洪喜,樊国栋,冷光辉. 仿生制备多孔ZrC/C复合陶瓷材料[J]. 《材料导报》期刊社, 2018, 32(10): 1602-1605.
[8] 胡银春,张雪荣,黄棣,魏延,苏晓妹,周琼. 蒸发液滴中的流动与传质行为:理论与应用*[J]. 《材料导报》期刊社, 2017, 31(7): 1-5.
[9] 张勋, 刘书海, 肖华平. 冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 99-112.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed