Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (7): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.07.001
  材料综述 |
蒸发液滴中的流动与传质行为:理论与应用*
胡银春1,张雪荣1,黄棣1,魏延1,苏晓妹2,周琼3
1 太原理工大学力学学院,山西省材料强度与结构冲击重点实验室, 太原 030024;
2 中国天辰工程有限公司, 天津 300400;
3 中国石油大学北京理学院, 北京 102200
Flow and Mass Transfer Laws in Drying Droplets: Theory and Applications
HU Yinchun1, ZHANG Xuerong1, HUANG Di1, WEI Yan1, SU Xiaomei2, ZHOU Qiong3
1 College of Mechanics, Shanxi Key Laboratory of Material Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024;
2 China Tianchen Engineering Corporation, Tianjin 300400;
3 College of Science,China University of Petroleum-Beijing, Beijing 102200
下载:  全 文 ( PDF ) ( 1341KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 液滴蒸发过程伴随着热量和物质的传输,是现代技术领域普遍存在而又未充分认识的一个复杂过程。综述了蒸发液滴中的流动与传质规律及其应用研究进展,主要包括典型的蒸发液滴过程及其中流动方式、聚合物溶液液滴蒸发成膜花样、复合材料溶液液滴蒸发成膜花样等液滴蒸发理论的实验研究。同时简要分析了蒸发液滴理论在喷墨打印、纳米材料制备等领域的应用研究。最后对聚合物溶液液滴蒸发理论的现状及未来应用需求进行了总结与展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡银春
张雪荣
黄棣
魏延
苏晓妹
周琼
关键词:  液滴  聚合物  颗粒  毛细管流动  Marangoni对流  沉积膜    
Abstract: The drying of droplet is a process with heat and matter transfer. It is a process that permeates most disciplines in modern technologies and has not been fully understood. The flow and mass transfer laws in the drying droplets and their application are reviewed in this paper. It mainly includes experiments aimed at principles for typical process of droplet drying and the correspon-ding matter flow modes, film patterns from drying polymer solution droplet, composite solution droplet, and complex droplets. Meanwhile, the applications of drying droplet theory in ink-jet printing, disease diagnosis and nanomaterial preparation are briefly analyzed. Finally, present situation and future application requirements for drying droplet theory are summarized and prospected.
Key words:  droplet    polymer    particle    capillary flow    Marangoni convection    deposited film
               出版日期:  2017-04-10      发布日期:  2018-05-08
ZTFLH:  TB324  
基金资助: *国家自然科学基金(11502158;51503140);太原理工大学人才基金(tyut-rc201315a);太原理工大学教育教学改革项目(tyut-201417)
作者简介:  胡银春:女,1983年生,博士,讲师,主要从事高分子溶液液滴成膜理论及其应用研究E-mail:yinchunhu117@163.com
引用本文:    
胡银春,张雪荣,黄棣,魏延,苏晓妹,周琼. 蒸发液滴中的流动与传质行为:理论与应用*[J]. 《材料导报》期刊社, 2017, 31(7): 1-5.
HU Yinchun, ZHANG Xuerong, HUANG Di, WEI Yan, SU Xiaomei, ZHOU Qiong. Flow and Mass Transfer Laws in Drying Droplets: Theory and Applications. Materials Reports, 2017, 31(7): 1-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.07.001  或          http://www.mater-rep.com/CN/Y2017/V31/I7/1
1 Gans B J de, Duineveld P C, Schubert U S. Inkjet printing of polymers: State of the art and future developments[J]. Adv Mater,2004,16(3):203.
2 Sirringhaus H, Kawase T, et al. High-resolution inkjet printing of all-polymer transistor circuits[J]. Science,2000,290:2123.
3 Denkov N D, Velev D, Kralchevsky P A, et al. Mechanism of formation of two-dimensional crystals from latex particles on substrates[J]. Langmuir,1992,8:3183.
4 Dimitrov A S, Dushkin C D, Yoshimura H, et al. Observations of latex particle two-dimensional-crystal nucleation in wetting films on mercury, glass, and mica[J]. Langmuir,1994,10:432.
5 Alivisatos P. Colloidal quantum dots. from scaling laws to biological applications[J]. Pure Appl Chem,2000,72(1-2):3.
6 Deegan R D, Bakajin O, et al. Capillary flow as the cause of ring stains from dried liquid drops[J]. Nature,1997,389:827.
7 Hu H, Larson R G. Marangoni effect reverses coffee-ring depositions[J]. J Phys Chem B,2006,110:7090.
8 Bormashenko E, Bormashenko Y, Pogreb R, et al. Droplet behavior on flat and textured surfaces: Co-occurrence of deegan outward flow with Marangoni solute instability[J]. J Colloid Interface Sci,2007,306(1):128.
9 Inen A C, Petrock A M, Chou T, et al. Applied surface science crystal morphology variation ininkjet-printed organic materials[J]. Appl Surf Sci,2011,258(2):827.
10 Jung Y, Kajiya T, Yamaue T, et al. Film formation kinetics in the drying process of polymer solution enclosed by bank[J]. Jpn J Appl Phys,2009, 48(3):031502-1.
11 Gu X, Wang G. Interfacial morphology and friction properties of thin PEO and PEO/PAA blend films[J]. Appl Surf Sci,2011,257(6):1952.
12 Tadashi K, Wataru K, Tohru O, et al. Controlling the drying and film formation processes of polymer solution droplets wit addition of small amount of surfactants[J]. J Phys Chem B,2009,113:15460.
13 Willmer D, Baldwin A, John D, et al. Growth of solid conical structures during multistage drying of sessile poly (ethylene oxide) droplets[J]. Phys Chem Chem Phys,2010,12:3998.
14 Kim J H, Ahn S I, Kim J H, et al. Evaporation of water droplets on polymer surfaces[J]. Langmuir,2007,23(11):6163.
15 Fang X, Li B, Petersen E, Ji Y, et al. Factors controlling the drop evaporation constant[J]. J Phys Chem B,2005,109:20554.
16 Kajiya T, Kaneko D, Doi M. Dynamical visualization of “coffee stain phenomenon” in droplets of polymer solution via fluorescent microscopy[J]. Langmuir,2008,24(21):12369.
17 Xu X F, Luo J. Marangoni flow in an evaporating water droplet[J]. Appl Phys Lett,2007,91(12):124102.
18 Xu Xuefeng.The flow in the evaporating water droplets[D]. Beijing: Tsinghua University,2007(in Chinese).
徐学锋. 蒸发水滴中的液体流动特性研究[D].北京:清华大学,2007.
19 Buffone C, Sefiane K. Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores[J]. Int J Multiphase Flow,2004,30(9):1071.
20 Buffone C, Sefiane K, Christy J R E. Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry[J]. Phys Fluids,2005, 17(5):052104.
21 He Q, Hallinan K P. A new particle image velocimetry technique for three-dimensional full field fluid flow measurement in evaporating films[J]. Experimental Thermal Fluid Sci,1998,17(3):230.
22 Hegseth J J, Rashidnia N, Chai A. Natural convection in droplet evaporation[J]. Phys Rev E,1996,54(2):1640.
23 Steinchen A, Sefiane K. Self-organised Marangoni motion at evaporating drops or in capillary menisci-thermohydro dynamical model[J]. J Non-Equilibrium Thermodynam,2005,30(1):39.
24 Hu H, Larson R G. Analysis of the microfluid flow in an evaporating sessile droplet[J]. Langmuir,2005,21:3963.
25 Hu H, Larson R G. Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet[J]. Langmuir,2005,21:3972.
26 Meysam R Barmi, Carl D Meinhart. Convective flows in evaporating sessile droplets[J]. J Phys Chem B,2014,118:2414.
27 Kajiya T, Monteux C, et al. Contact-line recession lea-ving a macroscopic polymer film in the drying droplets of water-poly(N,N-dimethylacrylamide) solution[J]. Langmuir,2009,25(12):6934.
28 Kim J H, Park S B, Kim J H, et al. Polymer transports inside eva-porating water droplets at various substrate temperatures[J]. J Phys Chem C,2011,115:15375.
29 Hu Y C, et al. Various nucleation and surface profiles induced by micro-flows in drying droplets of water-poly(ethylene oxide) solution at heating substrates[J]. Petroleum Sci,2013,10(2):262.
30 Hu Y C, Zhou Q, Wang Y F, et al. Peculiar surface profile of poly(ethylene oxide) film with ring-like nucleation distribution induced by Marangoni flow effect[J]. Colloids Surf A,2013,428:39.
31 Kaya D, Belyi V A, et al. Pattern formation in drying droplets of polyelectrolyte and salt[J]. J Phys Chem,2010,133:114905-1.
32 Smalyukh I, Zribi O, Butler J, et al. Structure and dynamics of li-quid crystalline pattern formation in drying droplets of DNA[J]. Phys Rev Lett,2006,96: 177801-1.
33 Uno K, Hayashi K, Hayashi T, et al. Particle adsorption in evaporating droplets of polymer latex dispersions on hydrophilic and hydrophobic surfaces[J]. Colloid Polym Sci,1998,276(9):810.
34 Yakhno T A, et al. The informative-capacity phenomenon of drying drops[J]. IEEE Eng Medicine Biol Mag,2005,24(2): 96.
35 Yunker P J, Still T, et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions[J]. Nature,2011,476:308.
36 Chris S H, Ding Y L, Simon B. The influence of nanoparticle shape on the drying of colloidal suspensions[J]. J Colloid Interface Sci,2010,352:99.
37 Sun P Z, Ma R Z, Wang K L, et al. Suppression of the coffee-ring effect by self-assembling graphene oxide and monolayer titania[J]. Nanotechnology,2013,24:075601-1.
38 Han W, Lin Z Q. Learning from “coffee rings”: Ordered structures enabled by controlled evaporative self-assembly[J]. Angew Chem Int Ed,2012, 51:1534.
39 Tekin E, Smith P J, Schubert U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter,2008,4:703.
40 Wang L, Song Y. Controllable printing droplets for high-resolution patterns[J]. Adv Mater,2014,26:6950.
41 Kuang M, Wang J, Bao B, et al. Inkjet printing patterned photonic crystal domes for wide viewing-angle displays by controlling the sli-ding three phase contact Line[J]. Adv Opt Mater,2014,2:34.
42 Kyoohee W, et al. Ink-Jet printing of Cu-Ag based highly conductive tracks on a transparent substrate[J]. Langmuir,2009,25:429.
43 Yang Huixian,Su Caohui. Single dispersed Imagolite nanotubes from drying droplet[J]. Chin Sci Bull,2007,52(14):1719.
杨慧娴,苏朝晖.液滴蒸发形成单根分散的合成Imogolite纳米管[J].科学通报,2007,52(14):1719.
44 Shabalin V N, Shatokhina S N. Morphology of body liquids[M]. Moscow: Khrizostom,2001(in Russian).
45 Ajaev V S. Spreading of thin volatile liquid droplets on uniformly heated surfaces[J]. J Fluid Mech,2005,528:279.
46 Popov Y. Evaporative deposition patterns: Spatial dimensions of the deposit[J]. Phys Rev E,2005,71:36313.
47 Rabani E, Reichman D R, Geissler P L, et al. Drying-mediated self-assembly of nanoparticles[J]. Nature,2003,426:271.
48 Vancea I, Thiele U, et al. Front instabilities in evaporatively dewetting nanofluids[J]. Phys Rev E,2008,78:041601.
49 Khellil S. On the formation of regular patterns from drying droplets and their potential use for bio-medical applications[J]. J Bionic Eng,2010,7:S82.
50 Yakhno T A, Sedova O A, et al. On the existence of regular structures in liquid human blood serum (plasma) and phase transitions in the course of its drying[J]. Techn Phys,2003, 48: 399.
[1] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[2] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[3] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[4] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[5] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[6] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[7] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[8] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[9] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[10] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[11] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[12] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[13] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[14] 吴治涌, 水世显, 张显, 杨鹏, 万艳芬. 贵金属纳米颗粒-二维过渡金属硫化物复合纳米结构:制备技术与光电性能[J]. 材料导报, 2019, 33(3): 426-432.
[15] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed