Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
WANG Fan1, WANG Xitao1,2, XU Shiguang1, HE Jinshan1,*
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China 2 Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
Abstract: The hot compression tests of 7Mo super austenitic stainless (SASS) were conducted to obtain flow curves at the temperature of 1 000—1 200 ℃ and strain rate of 0.001 s-1 to 1 s-1. To predict the non-linear hot deformation behaviors of the steel, back propagation-artificial neural network (BP-ANN) with 16×8×8 hidden layer neurons was proposed. The predictability of the ANN model is evaluated according to the distribution of mean absolute error (MAE) and relative error. The relative error of 85% data for the BP-ANN model is among ±5% while only 42.5% data predicted by the Arrhenius constitutive equation is in this range. Especially, at high strain rate and low temperature, the MAE of the ANN model is 2.49%, which has decreases for 18.78%, compared with conventional Arrhenius constitutive equation.
王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
WANG Fan, WANG Xitao, XU Shiguang, HE Jinshan. Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network. Materials Reports, 2024, 38(17): 23060023-7.
1 Pu E X, Zheng W J, Song Z G, et al. Journal of Iron and Steel Research International, 2014, 21(10), 975. 2 Zhang R, He J, Xu S, et al. Journal of Materials Research and Technology, 2022, 21, 1248. 3 Han Y, Wu H, Zhang W, et al. Materials & Design, 2015, 69, 230. 4 Phaniraj M P, Lahiri A K, Journal of Materials Processing Technology, 2003, 141(2), 219. 5 Zener C, Hollomon J H, Journal of Applied Physics, 1944, 15(1), 22. 6 Liu J, Zeng W, Lai Y, et al. Materials Science and Engineering:A, 2014, 597, 387. 7 Liu Shaofei, Qu Yinhu, Wang Chonglou, et al. Materials Reports 2018, 32 (13), 2241. 8 Han Y, Qiao G, Sun J, et al. Computational Materials Science, 2013, 67, 93. 9 Bhattacharya R, Lan Y J, Wynne B P, et al. Journal of Materials Processing Technology, 2014, 214(7), 1408. 10 Han Y, Qiao G, Sun Y, et al. Materials Science and Engineering:A, 2012, 539, 61. 11 Lin Y C, Chen M S, Zhong J. Mechanics Research Communications, 2008, 35(3), 142. 12 Ren J S, Li X L, Xiao S T, et al. Materials Reports, 2020, 34(Z1), 283. 13 Mirzadeh H, Cabrera J M, Najafizadeh A. Acta Materialia, 2011, 59(16), 6441. 14 Bock F E, Aydin R C, Cyron C J, et al. Frontiers in Materials, 2019, 6, 110. 15 Kang Jing, Mi Xiaoxi, Wang Hailian, et al. Materials Reports, 2020, 34(21), 21172. 16 Cheng P, Wang D, Zhou J, et al. Metals, 2022, 12(9), 1429. 17 Qiao L, Deng Y, Liao M, et al. Materials Today Communications, 2020, 25, 101134. 18 Gupta A K, Singh S K, Reddy S, et al. Materials & Design, 2012, 35, 589. 19 Quan G Z, Pan J, Wang X. Applied Sciences, 2016, 6(3), 66. 20 Deb S, Muraleedharan A, Immanuel R J, et al. Theoretical and Applied Fracture Mechanics, 2022, 119, 103338. 21 Xu S, He J, Zhang R, et al. Journal of Materials Research and Technology, 2023, 23, 1738. 22 Huang K, Logé R E, Materials & Design, 2016, 111, 548. 23 Li H, Yang S, Zhang S, et al. Materials & Design, 2017, 118, 207. 24 Churyumov A, Kazakova A, Churyumova T. Metals, 2022, 12(3), 447. 25 Li B, Pan Q, Yin Z. Journal of Alloys and Compounds, 2014, 584, 406. 26 Zhu Y, Cao Y, Liu C, et al. Materials Today Communications, 2020, 25, 101329. 27 Quan G Z, Lv W Q, Mao Y P, et al. Materials & Design, 2013, 50, 51. 28 Sabokpa O, Zarei Hanzaki A, Abedi H R, et al. Materials & Design, 2012, 39, 390. 29 Dixit M C, Srivastava N, Rajput S K. Materials Today:Proceedings, 2017, 4(2), 1964. 30 Yan J, Pan Q L, Li A D, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(3), 638. 31 Zhao J, Ding H, Zhao W, et al. Computational Materials Science, 2014, 92, 47. 32 Zhang C, Li X Q, Li D S, et al. Transactions of Nonferrous Metals Society of China, 2012, 22, s457. 33 Lin Y C, Chen X M. Materials & Design, 2011, 32(4), 1733.