Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23060023-7    https://doi.org/10.11896/cldb.23060023
  金属与金属基复合材料 |
基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为
王帆1, 王西涛1,2, 徐世光1, 何金珊1,*
1 北京科技大学钢铁共性技术协同创新中心,北京 100083
2 齐鲁工业大学先进材料研究所(山东省科学院),山东省轻质高强金属材料省级重点实验室,济南 250353
Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network
WANG Fan1, WANG Xitao1,2, XU Shiguang1, HE Jinshan1,*
1 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Shandong Provincial Key Laboratory for High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Science), Jinan 250353, China
下载:  全 文 ( PDF ) ( 9760KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 对7Mo超级奥氏体不锈钢(SASS)进行热压缩试验,获得其在变形温度为1 000~1 200 ℃、应变速率为0.001~1 s-1条件下的流变曲线。为了预测该钢种的非线性热变形行为,提出了具有16×8×8隐层神经元的反向传播人工神经网络(BP-ANN)。根据平均绝对误差(MAE)和相对误差的分布来评估ANN模型的可预测性。BP-ANN模型85%的数据相对误差在±5%之间,而Arrhenius本构方程预测的只有42.5%的数据在此范围内。特别是在高应变速率和低温下,ANN模型的MAE为2.49%,比传统Arrhenius本构方程低18.78%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王帆
王西涛
徐世光
何金珊
关键词:  7Mo超级奥氏体不锈钢  热变形行为  流变应力  反向传播人工神经网络  Arrhenius本构方程    
Abstract: The hot compression tests of 7Mo super austenitic stainless (SASS) were conducted to obtain flow curves at the temperature of 1 000—1 200 ℃ and strain rate of 0.001 s-1 to 1 s-1. To predict the non-linear hot deformation behaviors of the steel, back propagation-artificial neural network (BP-ANN) with 16×8×8 hidden layer neurons was proposed. The predictability of the ANN model is evaluated according to the distribution of mean absolute error (MAE) and relative error. The relative error of 85% data for the BP-ANN model is among ±5% while only 42.5% data predicted by the Arrhenius constitutive equation is in this range. Especially, at high strain rate and low temperature, the MAE of the ANN model is 2.49%, which has decreases for 18.78%, compared with conventional Arrhenius constitutive equation.
Key words:  7Mo super austenitic stainless steel    hot deformation behavior    flow stress    BP-ANN    Arrhenius constitutive equation
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG142  
基金资助: 国家自然科学基金(U1810207);齐鲁理工大学“科教产融合(国际合作)”创新先导项目(2020KJC-GH03)
引用本文:    
王帆, 王西涛, 徐世光, 何金珊. 基于反向传播神经网络预测7Mo 超级奥氏体不锈钢的热变形行为[J]. 材料导报, 2024, 38(17): 23060023-7.
WANG Fan, WANG Xitao, XU Shiguang, HE Jinshan. Prediction of Hot Deformation Behavior of 7Mo Super Austenitic Stainless Steel Based on Back Propagation Neural Network. Materials Reports, 2024, 38(17): 23060023-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23060023  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23060023
1 Pu E X, Zheng W J, Song Z G, et al. Journal of Iron and Steel Research International, 2014, 21(10), 975.
2 Zhang R, He J, Xu S, et al. Journal of Materials Research and Technology, 2022, 21, 1248.
3 Han Y, Wu H, Zhang W, et al. Materials & Design, 2015, 69, 230.
4 Phaniraj M P, Lahiri A K, Journal of Materials Processing Technology, 2003, 141(2), 219.
5 Zener C, Hollomon J H, Journal of Applied Physics, 1944, 15(1), 22.
6 Liu J, Zeng W, Lai Y, et al. Materials Science and Engineering:A, 2014, 597, 387.
7 Liu Shaofei, Qu Yinhu, Wang Chonglou, et al. Materials Reports 2018, 32 (13), 2241.
8 Han Y, Qiao G, Sun J, et al. Computational Materials Science, 2013, 67, 93.
9 Bhattacharya R, Lan Y J, Wynne B P, et al. Journal of Materials Processing Technology, 2014, 214(7), 1408.
10 Han Y, Qiao G, Sun Y, et al. Materials Science and Engineering:A, 2012, 539, 61.
11 Lin Y C, Chen M S, Zhong J. Mechanics Research Communications, 2008, 35(3), 142.
12 Ren J S, Li X L, Xiao S T, et al. Materials Reports, 2020, 34(Z1), 283.
13 Mirzadeh H, Cabrera J M, Najafizadeh A. Acta Materialia, 2011, 59(16), 6441.
14 Bock F E, Aydin R C, Cyron C J, et al. Frontiers in Materials, 2019, 6, 110.
15 Kang Jing, Mi Xiaoxi, Wang Hailian, et al. Materials Reports, 2020, 34(21), 21172.
16 Cheng P, Wang D, Zhou J, et al. Metals, 2022, 12(9), 1429.
17 Qiao L, Deng Y, Liao M, et al. Materials Today Communications, 2020, 25, 101134.
18 Gupta A K, Singh S K, Reddy S, et al. Materials & Design, 2012, 35, 589.
19 Quan G Z, Pan J, Wang X. Applied Sciences, 2016, 6(3), 66.
20 Deb S, Muraleedharan A, Immanuel R J, et al. Theoretical and Applied Fracture Mechanics, 2022, 119, 103338.
21 Xu S, He J, Zhang R, et al. Journal of Materials Research and Technology, 2023, 23, 1738.
22 Huang K, Logé R E, Materials & Design, 2016, 111, 548.
23 Li H, Yang S, Zhang S, et al. Materials & Design, 2017, 118, 207.
24 Churyumov A, Kazakova A, Churyumova T. Metals, 2022, 12(3), 447.
25 Li B, Pan Q, Yin Z. Journal of Alloys and Compounds, 2014, 584, 406.
26 Zhu Y, Cao Y, Liu C, et al. Materials Today Communications, 2020, 25, 101329.
27 Quan G Z, Lv W Q, Mao Y P, et al. Materials & Design, 2013, 50, 51.
28 Sabokpa O, Zarei Hanzaki A, Abedi H R, et al. Materials & Design, 2012, 39, 390.
29 Dixit M C, Srivastava N, Rajput S K. Materials Today:Proceedings, 2017, 4(2), 1964.
30 Yan J, Pan Q L, Li A D, et al. Transactions of Nonferrous Metals Society of China, 2017, 27(3), 638.
31 Zhao J, Ding H, Zhao W, et al. Computational Materials Science, 2014, 92, 47.
32 Zhang C, Li X Q, Li D S, et al. Transactions of Nonferrous Metals Society of China, 2012, 22, s457.
33 Lin Y C, Chen X M. Materials & Design, 2011, 32(4), 1733.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 于以标, 陈乐平, 徐勇, 袁源平, 方森鹏. 2060-T8E30铝锂合金的高温拉伸变形行为及显微组织研究[J]. 材料导报, 2023, 37(6): 21090209-6.
[3] 汤迁, 郭鹏程, 罗红, 马洪浩, 张立强, 李落星. 车身用22MnB5超高强热成形钢的热变形行为及热加工图[J]. 材料导报, 2023, 37(18): 22030170-7.
[4] 陈天天, 施晨琦, 宁哲达, 闻明, 管伟明, 郭俊梅, 王传军. 金属及合金材料热变形中的本构模型与热加工图研究进展[J]. 材料导报, 2022, 36(Z1): 21120011-9.
[5] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[6] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[7] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[8] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[9] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed