Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23020018-11    https://doi.org/10.11896/cldb.23020018
  高分子与聚合物基复合材料 |
非金属PE管材氢气-甲烷渗透研究进展
郑度奎1, 李敬法2,*, 宇波1, 黄志强1, 张引弟1, 刘翠伟3, 赵杰2, 韩东旭2
1 长江大学石油工程学院,武汉 430100
2 北京石油化工学院机械工程学院并氢能研究中心,北京 102617
3 中国石油大学(华东)储运与建筑工程学院,山东 青岛 266580
Research Progress on Hydrogen-Methane Permeation in Non-metallic PE Pipe Materials
ZHENG Dukui1, LI Jingfa2,*, YU Bo1, HUANG Zhiqiang1, ZHANG Yindi1, LIU Cuiwei3, ZHAO Jie2, HAN Dongxu2
1 School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
2 School of Mechanical Engineering and Hydrogen Energy Research Center, Beijing Institute of Petrochemical Technology, Beijing 102617, China
3 College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China
下载:  全 文 ( PDF ) ( 5695KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用非金属聚乙烯(PE)管道输送纯氢和掺氢天然气可有效避免金属管道的氢脆。但由于材料特性,PE管道在输送过程中存在一定程度的气体渗漏,造成能源浪费和引发安全问题。为选择合适的PE管材和确定输送条件,需深入揭示氢气/甲烷在PE材料中的渗透扩散机理和了解研究方法。本文以文献调研的方式,在微观角度从溶解和扩散两方面揭示了气体在PE材料中的渗透机理;综述了常用于研究氢气、甲烷和氢气/甲烷混合气体在PE材料中溶解、扩散和渗透性能的常用实验方法和数值模拟方法的研究进展,其中实验方法主要有膜渗透实验法和全尺寸渗透实验法,数值模拟方法主要有分子动力学模拟法和数学模型法。根据研究进展,讨论并指出了实验方法和数值模拟方法中存在的问题,并针对当前研究的不足指出了未来的研究重点和发展趋势。本文可为纯氢及掺氢天然气在PE管道中的安全输送提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑度奎
李敬法
宇波
黄志强
张引弟
刘翠伟
赵杰
韩东旭
关键词:  氢气  聚乙烯管道  渗透性能  溶解度系数  扩散系数  实验研究  分子动力学模拟    
Abstract: It can avoid hydrogen embrittlement existing in metal pipelines by using non-metallic polyethylene (PE) pipelines to transport pure hydrogen and hydrogen-enriched natural gas. However, due to the material characteristics, there is a certain degree of gas leakageand permeation in the transportation process of PE pipeline, resulting in energy waste and safety problems. To select suitable PE pipeline materials and determine the transportation parameters, it is necessary to deeply reveal the mechanism of permeation and diffusion of hydrogen/methane in PE material and explore the research methods for studying the permeation properties of hydrogen/methane in PE. In this paper, by means of literature review, the permeation mechanism of gas in PE materials is introduced from the aspects of dissolution and diffusion at the microscopic point. In addition, the research progress of experimental methods and numerical simulation methods for the solubility, diffusion and permeability of hydrogen, methane and hydrogen/methane mixtures in PE material are reviewed. The experimental methods mainly include membrane permeation experiment and full-scale pipe permeation experiment, and the numerical simulation methods include molecular dynamics simulation method and mathematical model method. According to the research status, the problems existing in experimental methods and numerical simulation methods are discussed and pointed out. Finally, the future research focus and development trend are proposed in view of the shortcomings of the current research. This paper can provide reference for the safe transportation of hydrogen and hydrogen-enriched natural gas in PE pipelines.
Key words:  hydrogen    polyethylene pipelines    permeability    solubility coefficient    diffusion coefficient    experimental study    molecular dynamics simulation
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TE832  
基金资助: 国家重点研发计划“氢能技术”重点专项资助(2021YFB4001601)
通讯作者:  *李敬法,北京石油化工学院机械工程学院副研究员、硕士研究生导师。2012年西南石油大学油气储运工程专业本科毕业,2017年中国石油大学(北京)油气储运工程专业博士毕业。目前主要从事纯氢/掺氢天然气安全高效输送技术、流动与传热数值计算方法等方面的研究工作。以第一或通信作者发表SCI论文近30篇,包括International Journal of Heat and Mass Transfer、International Communications in Heat and Mass Transfer、Journal of Natural Gas Science and Engineering、Petroleum Science等。lijingfa@bipt.edu.cn   
作者简介:  郑度奎,2017年6月、2020年6月分别于广东石油化工学院和长江大学获得工学学士学位和硕士学位。现为长江大学石油工程学院博士研究生,目前主要研究方向为纯氢/掺氢天然气在非金属管道中的渗透性与相容性。
引用本文:    
郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
ZHENG Dukui, LI Jingfa, YU Bo, HUANG Zhiqiang, ZHANG Yindi, LIU Cuiwei, ZHAO Jie, HAN Dongxu. Research Progress on Hydrogen-Methane Permeation in Non-metallic PE Pipe Materials. Materials Reports, 2024, 38(16): 23020018-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020018  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23020018
1 Li J F, Su Y, Zhang H, et al. Natural Gas Industry, 2021, 41(4), 137 (in Chinese).
李敬法, 苏越, 张衡, 等. 天然气工业, 2021, 41(4), 137.
2 Zhang J X, Wang C L, Liu C W, et al. Surface Technology, 2022, 51(10), 76 (in Chinese).
张家轩, 王财林, 刘翠伟, 等. 表面技术, 2022, 51(10), 76.
3 Xu Z Y, Zhang P Y, Meng G Z. Surface Technology, 2019, 48(11), 45 (in Chinese).
徐政一, 张鹏远, 孟国哲. 表面技术, 2019, 48(11), 45.
4 Haeseldonckx D, D’haeseleer W. International Journal of Hydrogen Energy, 2007, 32, 1381.
5 Li C J, Huang Z J. Natural gas pipeline, Petroleum Industry Press, China, 2016, pp.28 (in Chinese).
李长俊, 黄泽俊. 天然气管道输送, 石油工业出版社, 2016, pp.28.
6 China Gas Association. Urban gas polyethylene (PE) transmission and distribution system, China Architecture & Building Press, China, 2011, pp.15 (in Chinese).
中国城市燃气协会. 城镇燃气聚乙烯(PE)输配系统, 中国建筑工业出版社, 2011, pp.15.
7 Wang K R, Liao F Z, Zheng J P. Gas polyethylene pipeline engineering technology, Shanghai Scientific & Technical Publishers, China, 2009, pp.10 (in Chinese).
王可仁, 廖复中, 郑镜潘. 燃气聚乙烯管道工程技术, 上海技术科学出版社, 2009, pp.10.
8 Hermkens R J M, Colmer H, Oohoff H A. In:Proceedings of the 19th Plastic Pipes Conference. Las Vegas, 2018, pp.1.
9 Klopffer M H, Flaconneche B. Oil & Gas Science & Technology, 2001, 56, 223.
10 Scheichl R, Klopffer M H, Benjelloun-Dadaghi Z, et al. Journal of Membrane Science, 2005, 254, 275.
11 Zhang X M, Wang P, Li H B, et al. China Plastics, 2021, 35(3), 97 (in Chinese).
张学敏, 王品, 李厚补, 等. 中国塑料, 2021, 35(3), 97.
12 Li H B, Zhang X M, Ma X Y, et al. Plastics, 2021, 50(2), 72 (in Chinese).
李厚补, 张学敏, 马相阳, 等. 塑料, 2021, 50(2), 72.
13 Li H B, Zhang X M, Chu H F, et al. Polymers, 2022, 14, 545.
14 Pant P V K, Boyd R H. Macromolecules, 1993, 26, 679.
15 Dutta R C, Bhatis S K. Langmuir, 2017, 33, 936.
16 Anderson L R, Yang Q, Ediger A M. Physical Chemistry Chemical Physics, 2018, 20, 22123.
17 Zheng D K, Li J F, Liu B, et al. Journal of Molecular Liquids, 2022, 368, 120773.
18 Sacristan J, Mijangos C. Macromolecules, 2010, 43, 7357.
19 Charati S G, Stern S A. Macromolecules, 1998, 31, 5529.
20 Lim S Y, Tsotsis T T, Sahimi M. Journal of Chemical Physics, 2003, 119, 496.
21 Meunier, M. Journal of Chemical Physics, 2005, 123, 207.
22 Pavel D, Shanks R. Polymer, 2005, 46, 6135.
23 Faure F, Rousseau B, Lachet V, et al. Fluid Phase Equilibria, 2007, 261, 168.
24 Mozaffari F, Eslami H, Moghadasi J. Polymer, 2010, 51, 300.
25 Bian L, Shu Y J, Wang X F. Chinese Physics B, 2012, 21, 325.
26 Branken D J, Krieg H M, Lachmann G, et al. Journal of Membrane Science, 2014, 470, 294.
27 Golzar K, Amjad-Iranagh S, Amani M, et al. Journal of Membrane Science, 2014, 451, 117.
28 Yang Y F, Nair A K N, Sun S Y. The Journal of Physical Chemistry B, 2020, 124, 1301.
29 Zhao M, Zhang C L, Yang F, et al. Polymer, 2021, 233, 124200.
30 He J C, Zhou Y L, Fan C G, et al. Russian Journal of Physical Chemistry B, 2016, 10, 313.
31 Tan J H, Chen C L, Liu Y W, et al. Journal of Polymer Research, 2020, 27, 277.
32 Zhang D N, Li H B, Qi D T, et al. Natural Gas Industry, 2017, 37(3), 104 (in Chinese).
张冬娜, 李厚补, 戚东涛, 等. 天然气工业, 2017, 37(3), 104.
33 Flaconneche B, Martin J, Klopffer M H. Oil & Gas Science & Technology, 2001, 56, 245.
34 Ash R, Barrer R M, Palmer D G. Polymer, 1970, 11, 421.
35 Chen M J. Investigation of the sorption and diffusion in polyethylene by gravimetric and NMR methods and its application. Ph. D. Thesis, Zhejiang University, China, 2014 (in Chinese).
陈美娟. 基于重量法和核磁共振法的聚乙烯中溶解扩散行为研究及其应用. 博士学位论文, 浙江大学, 2014.
36 Fujiwara H, Ono H, Onoue K, et al. International Journal of Hydrogen Energy, 2020, 53, 29082.
37 Fujiwara H, Ono H, Ohyama K, et al. International Journal of Hydrogen Energy, 2021, 46, 11832.
38 Flaconneche B, Martin J, KlopfferR M H. Oil & Gas Science and Technology, 2001, 56, 261.
39 Adewole J K, Jensen L, Al-Mubaiyedh U A, et al. Journal of Polymer Research, 2012, 19, 9814.
40 Foulc M P, Nony F, Mazabraud P, et al. In:16th World Hydrogen Energy Conference. Lyon, 2006, pp.1.
41 Klopffer M H, Flaconneche B, Odru P. Plastics Rubber and Composites, 2007, 36, 184.
42 Klopffer M H, Flaconneche B. In:Plastics Pipes XIV. Budapest, 2008, pp.1.
43 Klopffer M H, Berne P, Castagnet S, et al. In:18th World Hydrogen Energy Conference. Essen, 2010, pp.1.
44 Memari P, Lachet V, Klopffer M H, et al. Journal of Membrane Science, 2012, 390-391, 194.
45 Klopffer M H, Berne P, Espuche e. Oil & Gas Science & Technology, 2015, 70, 305.
46 Tan J H, Chen C L, Liu Y W, et al. Journal of Polymer Research, 2020, 10, 12475.
47 Yi Y, Bi P, Zhao X F, et al. Journal of Polymer Research, 2018, 25, 43.
48 Liu H L, Ding X J, Yi J, et al. Frontiers of Chemical Science and Engineering, 2010, 4, 257.
49 Memari P, Lachet V, Rousseau B. Polymer, 2010, 21, 4978.
50 Sarrasin F, Memari P, Klopffer M H, et al. Journal of Membrane Science, 2015, 490, 380.
51 Yang Y F, Nair A K N, Sun S Y. Industrial & Engineering Chemistry Research, 2019, 58, 8426.
52 Yang Y F, Nair A K N, Sun S Y. Industrial & Engineering Chemistry Research, 2021, 60, 7729.
53 Fox T G, Flory P J. Journal of Applied Physics, 1950, 21, 581.
54 Huang Y. Diffusion of gas molecules in theorganasilicon-containing polymers using molecular simulation. Master’s Thesis, Xiamen University, China, 2006 (in Chinese).
黄宇. 分子模拟研究气体分子在有机硅聚合物中的扩散行为. 硕士学位论文, 厦门大学, 2006.
55 Chen L B. The study on transport behavior of hydrogen in brominated butyl rubber. Master’s Thesis, Southwest University of Science and Technology, China, 2014 (in Chinese).
陈利宾. 氢在溴化丁基橡胶材料中的渗透行为研究. 硕士学位论文, 西南科技大学, 2014.
56 Fan C G, Shuai M B, Zhou Y L, et al. Polymer Materials Science and Engineering, 2015, 31(3), 112 (in Chinese).
范昌改, 帅茂兵, 周元林, 等. 高分子材料科学与工程, 2015, 31(3), 112.
57 Zhang L S. The gas permeability in poly(ethylene-co-1-hexene) membrane and effect of molecular structure on gas permeability studied by molecular simulation. Master’s Thesis, Beijing University of Chemical Technology, China, 2008 (in Chinese).
张立书. 分子模拟法研究乙烯/1-已烯的气体渗透性及分子结构影响因素的分析. 硕士学位论文, 北京化工大学, 2008.
58 Tao C G, Feng H J, Zhou J, et al. Acta Physico-Chimica Sinica, 2009, 25(7), 1373 (in Chinese).
陶长贵, 冯海军, 周健, 等. 物理化学学报, 2009, 25(7), 1373.
59 Qi D T, Xia R H, Li H B, et al. Packaging Engineering, 2014, 35(3), 28 (in Chinese).
戚东涛, 夏荣厚, 李厚补, 等. 包装工程, 2014, 35(3), 28.
60 Tamai Y, Tanaka H, Nakanishi K. Macromolecules, 1994, 27, 4498.
61 Wang P L. Studies on diffusion coefficients of migrations in plastic packaging by molecular dynamics. Ph. D. Thesis, Jinan University, China, 2010 (in Chinese).
王平利. 塑料包装材料中迁移物扩散系数的分子动力学研究. 博士学位论文, 暨南大学, 2010.
62 Michaels A S, Parker R B. Journal of Polymer Science, 1959, 41, 53.
63 Michaels A S, Bixler H J. Journal of Polymer Science, 1961, 50, 413.
64 Michaels A S, Vieth W R, Brrie J A. Journal of Applied Physics, 1963, 34, 13.
65 Memari P, Lachet V, Rousseau B. Oil & Gas Science & Technology, 2015, 70, 227.
66 Vieira-Linhares A M, Seaton N A. Chemical Engineering Science, 2003, 58, 4129.
67 Firouzi M, Wilcox J. Microporous and Mesoporous Materials, 2012, 158, 19.
68 Tong T X, Cao D P. Aiche Journal, 2018, 64, 1059.
69 Furukawa S, Mccabe C, Nitta T, et al. Fluid Phase Equilibria, 2002, 194, 309.
70 Zhang Y, Furukawa S, Nitta T. Separation and Purification Technology, 2003, 32, 215.
71 Furukawa S, Nitta T. Journal of Membrane Science, 2000, 178, 107.
72 Zhang K Q, Wang Z W, Zeng S F, et al. Materials Reports, 2023, 37(22), 251 (in Chinese).
章凯倩, 王志伟, 曾少甫, 等. 材料导报, 2023, 37(22), 251.
73 Wang S M, Yu Y X, Gao G H. Chinese Journal of Chemical Engineering, 2006, 2, 30.
74 Wang S M, Yu Y X, Gao G H. Journal of Membrane Science, 2006, 271, 140.
75 Wu Z Q, Liu Z P, Wang W C, et al. Separation & Purification Technology, 2008, 64, 71.
76 Jiang P. Non-equilibrium molecular dynamic simulation on separation of CO2/CH4 in carbon membranes. Master’s Thesis, Dalian University of Technology, China, 2010 (in Chinese).
姜佩. 炭膜分离CO2/CH4的非平衡分子动力学模拟. 硕士学位论文, 大连理工大学, 2010.
77 Adewole J K, Hussein I A, Ai-Mubauyedh U A. Journal of Nano Research, 2013, 21, 95.
78 Maghami S, Mehrabani-Zeinabad A, Sadeghi M, et al. Chemical Engineering Science, 2019, 205, 58.
[1] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[2] 张华, 马帅帅, 张甜, 罗毅, 吴文洁, 任晓辉, 刘涛, 倪红卫. 基于高磷铁矿制备Fe-P合金催化剂用于高效全解水反应[J]. 材料导报, 2024, 38(15): 23050039-5.
[3] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[4] 莫耀鸿, 刘剑辉, 刘乐平, 陈正, 蒋增贵, 史才军. 水泥-蔗渣灰-矿粉海砂砂浆的抗压强度与抗氯盐渗透性能研究[J]. 材料导报, 2024, 38(14): 23030005-10.
[5] 孙彬, 高圣伦, 郝明欣, 曹光明, 李志峰. 小压下冷轧对热轧带钢氧化铁皮氢气还原动力学的影响[J]. 材料导报, 2023, 37(4): 21090067-6.
[6] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[7] 王磊, 于新海, 袁帅帅, 姚馨淇, 李传东. 石墨烯及MXenes在氢气传感器中的应用研究进展[J]. 材料导报, 2023, 37(21): 22040076-11.
[8] 马柯榕, 张浩, 张永帅, 李坤, 杜秀娟, 杨雯. Mn在铁素体Fe-25%Cr合金中的迁移行为研究[J]. 材料导报, 2023, 37(19): 22040395-5.
[9] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[10] 宋绍意, 黎学明, 杨文静, 何苗, 倪婕, 简燕, 曾旭钟. 可催化高氯酸钠热分解的三维微纳多孔铜的合成[J]. 材料导报, 2023, 37(12): 21080141-6.
[11] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[12] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[13] 刘鑫, 帅美荣, 李海斌, 谢广明, 常彬彬, 李亮. 微张力对不锈钢/碳钢界面复合质量及原子扩散的影响[J]. 材料导报, 2022, 36(23): 21050253-6.
[14] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[15] 葛晓宇, 闫二虎, 陈运灿, 黄仁君, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe渗氢合金成分优化设计和氢传输性能研究[J]. 材料导报, 2022, 36(18): 21060218-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed