Review on the Contact Hardening Performance of Cement-based Powder Materials Under High Pressure
ZHANG Chao1,2, ZHANG Zilong1, HUANG Wei1,2,3,*, PAN Axin2, LAI Zhichao2, WU Tianci4, HUANG Xingdong4
1 Advanced Manufacturing College of Fuzhou University, Jinjiang 362200, Fujian, China 2 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China 3 Fuzhou University Science and Education Park Development Center of Jinjiang City, Jinjiang 362200, Fujian, China 4 Quanzhou Licheng Xiexing Machinery Manufacturing Co., Ltd., Nan’an 362300, Fujian, China
Abstract: Under high pressure, some cement-based material powders with amorphous phase will undergo contact hardening, poly-condensation movement was occurred under pressure, and structural bond with certain strength will be formed between the powder particles, so as to quickly obtain artificial stone with certain strength and water resistance. In this paper, the bonding mechanism of cement-based material powder contact hardening under pressure and the effects of powder moisture content, drying conditions, calcium silicon ratio and pressing process on contact hardening performance are reviewed. Related research results show that hydrogen bonds, van der Waals forces, solid bridge bonds and other structural bonds are formed between powder particles under pressure. The moisture content of powder is an important factor affecting the contact hardening performance. Under pressure, the moisture can change the surface properties of powder particles and affect the bonding between particles, thereby influencing the mechanical properties of compaction products. The effect of calcium silicon ratio has a significant effect on the contact hardening properties, and the optimum calcium silicon ratio for different powder materials under pressing is also different. The existence of friction reduces the compaction efficiency, resulting in uneven distribution of density and strength of compacted products. The addition of lubricant can effectively reduce the influence of friction. In addition, reducing the height-diameter ratio of pressing die and using double-sided pressing can effectively improve the quality of the compaction products.
1 Liu D T, Shen Z Z, Xu L Q, et al. Journal of China Coal Society, 2020, 45(S1), 263 (in Chinese). 刘得潭, 沈振中, 徐力群, 等. 煤炭学报, 2020, 45(S1), 263. 2 Li Q, Liu S X, Su P, et al. Journal of Vibration and Shock, 2008(10), 23 (in Chinese). 李清, 刘绍兴, 苏鹏, 等. 振动与冲击, 2008(10), 23. 3 Feng K, He C, Xiao M Q. China Civil Engineering Journal, 2016, 49(8), 99 (in Chinese). 封坤, 何川, 肖明清. 土木工程学报, 2016, 49(8), 99. 4 Hu X, Shi C J, Yuan Q, et al. Cement and Concrete Composites, 2020, 106, 103465. 5 Xu J X, Zheng K R, Chen L, et al. Advances in Cement Research, 2021, 301, 1751. 6 Scott A, Alexander M G. Cement and Concrete Research, 2016, 89, 45. 7 Rivard P, Bérubé M, Ballivy G, et al. Cement and Concrete Research, 2003, 33(6), 927. 8 Glukhovsky, Runova, Maxcunov. Contact-hardening cementitious materials and compounds, Chongqing University Press, China, 2004, pp. 135 (in Chinese). 格鲁荷夫斯基, 鲁诺娃, 马克苏诺夫. 接触硬化胶凝材料及复合材料, 重庆大学出版社, 2004, pp.135. 9 Solonenko A P, Blesman A I, Polonyankin D A. Materials Characterization, 2020, 161, 110158. 10 Xu B Y, Wang T J, Li S, et al. Chinese Science Bulletin, 2022, 67(8), 784 (in Chinese). 徐北瑶, 王体健, 李树, 等. 科学通报, 2022, 67(8), 784. 11 Wang H C, Jin J, Liu S, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2137 (in Chinese). 王海成, 金娇, 刘帅, 等. 中南大学学报(自然科学版), 2021, 52(7), 2137. 12 Li T Z, Zhu X Q, Zhou X T, et al. Materials Reports, 2014, 28(19), 95 (in Chinese). 黎庭州, 朱孝钦, 周新涛, 等. 材料导报, 2014, 28(19), 95. 13 Zhang Y S, Dong D, Xiao Y, et al. Chinese Science Bulletin, 2021, 66(34), 4466 (in Chinese). 张永生, 董舵, 肖逸, 等. 科学通报, 2021, 66(34), 4466. 14 Lieberman R N, Knop Y, Palmerola N M. Journal of Cleaner Production, 2015, 238, 117880. 15 Li M H, Yang Z Q, Wang Y T, et al. Journal of China University of Mining & Technology, 2015, 44(4), 650 (in Chinese). 李茂辉, 杨志强, 王有团, 等. 中国矿业大学学报, 2015, 44(4), 650. 16 Song W L, Zhu Z D, Pu S Y, et al. Materials Reports, 2020, 34(22), 22070 (in Chinese). 宋维龙, 朱志铎, 浦少云, 等. 材料导报, 2020, 34(22), 22070. 17 Qin S H, Ni X J, Cao H M, et al. Journal of Building Structures, 2010, 31(8), 94 (in Chinese). 秦士洪, 倪校军, 曹桓铭, 等. 建筑结构学报, 2010, 31(8), 94. 18 Pu X C, Qin L C, Yan W N. Journal of the Chinese Ceramic Society, 1999(2), 16 (in Chinese). 蒲心诚, 秦力川, 严吴南. 硅酸盐学报, 1999(2), 16. 19 Peng X Q, Wang S P, Huang T, et al. Journal of Hunan University (Natural Sciences), 2011, 38(12), 8 (in Chinese). 彭小芹, 王淑萍, 黄滔, 等. 湖南大学学报(自然科学版), 2011, 38(12), 8. 20 Wang S P. Contact-hardening behaviour and mechanism of amorphous calcium silicate hydrate and its potential applications. Ph. D. Thesis, Chongqing University, China, 2016 (in Chinese). 王淑萍. 非晶态水化硅酸钙接触硬化过程动力学及胶凝机理研究. 博士学位论文, 重庆大学, 2016. 21 Hu S G, He Y J. Journal of Wuhan University of Technology, 2006(3), 61 (in Chinese). 胡曙光, 何永佳. 武汉理工大学学报, 2006(3), 61. 22 Liu Z B, Zong Y B, Ma H Y, et al. Chinese Journal of Engineering, 2015, 37(6), 757 (in Chinese). 刘召波, 宗燕兵, 马浩源, 等. 工程科学学报, 2015, 37(6), 757. 23 Beaudoin J, Raki L, Marchand J, et al. Journal of Materials Science, 2003, 38(24), 4957. 24 Alizadeh R, Beaudoin J J, Raki L. Materials and Structures, 2011, 44(1), 13. 25 Jennings S. U.S. patent, US005635292, 1994. 26 Stemmermann K G. U.S. patent, US007807078B2, 2003. 27 Liu X, Feng P, Shen X Y, et al. Materials Reports, 2021, 35(9), 9157 (in Chinese). 刘新, 冯攀, 沈叙言, 等. 材料导报, 2021, 35(9), 9157. 28 Khoshnazar R, Alizadeh R, Beaudoin J J, et al. Materials and Structures, 2015, 48, 67. 29 Wang S P, Peng X Q, Tang L, et al. Construction and Building Materials, 2021, 278, 122374. 30 Wang S P, Peng X Q, Tang L, et al. Materials, 2018, 11(12), 2367. 31 Li B, Chen W. Journal of the Chinese Ceramic Society, 2019, 47(8), 1095 (in Chinese). 李博, 陈伟. 硅酸盐学报, 2019, 47(8), 1095. 32 Pellenq R J M, Lequeux N, Van Damme H. Cement and Concrete Research, 2008, 38(2), 159. 33 Conceição J, Estanqueiro M, H Amaral M, et al. American Journal of Medical Sciences and Medicine, 2014, 2(4), 71. 34 Denny P J. Powder Technology, 2002, 127(2), 162. 35 Johansson B, Alderborn G. International Journal of Pharmaceutics, 1996, 132(1), 207. 36 Zhang Z, Yan Y, Qu Z, et al. Cement and Concrete Research, 2022, 159, 106858. 37 Fonseca P C, Jennings H M, Andrade J E. Mechanics of Materials, 2011, 43(8), 408. 38 Yaphary Y L, Lau D, Sanchez F, et al. Construction and Building Materials, 2020, 243, 118283. 39 Allen A J, Thomas J J, Jennings H M. Nature Materials, 2007, 6(4), 311. 40 Morales-Florez V. Journal of Materials Science, 2013, 48(14), 5022. 41 Alizadeh R, Beaudoin J J, Raki L. Cement and Concrete Composites, 2010, 32(5), 369. 42 Zhou Y. Study on the microstructure and properties of calcium silicate hydrates based on molecular dynamics simulation. Ph.D.Thesis, Southeast University, China, 2018 (in Chinese). 周扬. 基于分子动力学的水化硅酸钙的微结构与性能研究. 博士学位论文, 东南大学, 2018. 43 Li J, Zhang W, Monteiro P J M. Cement and Concrete Research, 2021, 143, 106371. 44 Hou D S, Yu J, Zhang J R, et al. Journal of Hydraulic Engineering, 2021, 52(1), 34 (in Chinese). 侯东帅, 于娇, 张津瑞, 等. 水利学报, 2021, 52(1), 34. 45 Hiroaki Masuda K. Powder Technology, 2006, 416. 46 Wang S P, Peng X Q, Tao Z, et al. Construction and Building Materials, 2017, 136, 465. 47 Zheng Q, He Z, Cai X H. Journal of Hydraulic Engineering, 2014, 45(2), 205 (in Chinese). 郑巧, 何真, 蔡新华. 水利学报, 2014, 45(2), 205. 48 Zheng Q, He Z. Engineering Journal of Wuhan University, 2013, 46(5), 583 (in Chinese). 郑巧, 何真. 武汉大学学报(工学版), 2013, 46(5), 583. 49 Gan X P. Journal of the Chinese Ceramic Society, 1996(6), 23 (in Chinese). 甘新平. 硅酸盐学报, 1996(6), 23. 50 Foley E M, Kim J J, Reda Taha M M. Cement and Concrete Research, 2012, 42(9), 1225. 51 Pelisser F, Gleize P J P, Mikowski A. The Journal of Physical Chemistry C, 2012, 116(32), 17219. 52 Lothenbach B, Nonat A. Cement and Concrete Research, 2015, 78, 57. 53 Guo L, Wang Z K, Guo L X, et al. Chinese Journal of Materials Research, 2022, 36(4), 278 (in Chinese). 郭磊, 王泽坤, 郭利霞, 等. 材料研究学报, 2022, 36(4), 278. 54 Cai X, Xi X G, Lyu H J, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(3), 800 (in Chinese). 蔡星, 奚新国, 吕洪杰, 等. 硅酸盐通报, 2018, 37(3), 800. 55 Yan J Y, Song Y M, Wang Z J, et al. Materials Reports, 2016, 30(S1), 416 (in Chinese). 闫京勇, 宋远明, 王志娟, 等. 材料导报, 2016, 30(S1), 416. 56 Xu W, Wu X L. Bulletin of the Chinese Ceramic Society, 2018, 37(4), 1294 (in Chinese). 徐文, 武小雷. 硅酸盐通报, 2018, 37(4), 1294. 57 Gu M, Jiao M H, Sun L, et al. Hot Working Technology, 2015, 44(5), 125 (in Chinese). 谷曼, 焦明华, 孙龙, 等. 热加工工艺, 2015, 44(5), 125. 58 Güner F, Cora N, Sofuolu H. Tribology International, 2018, 122, 125. 59 Nor S S M, Rahman M M, Tarlochan F, et al. Journal of Materials Processing Technology, 2008, 207(1-3), 118. 60 Yilmaz F, Hong S. Wear, 2013, 306(1-2), 179. 61 Wang Y B, Wang F Z, Wang Y K, et al. Acta Materiae Compositae Sinica, 2019, 36(12), 2902 (in Chinese). 王永滨, 王发展, 王雁琨, 等. 复合材料学报, 2019, 36(12), 2902. 62 Wang L, Zhu D C, Cheng G X. Surface Technology, 2015, 44(5), 72 (in Chinese). 王莉, 朱达川, 陈国需. 表面技术, 2015, 44(5), 72. 63 Zhu W T, Fu Y W, Li H J, et al. Lubrication Engineering, 2012, 37(11), 45 (in Chinese). 朱文婷, 付业伟, 李贺军, 等. 润滑与密封, 2012, 37(11), 45. 64 Zhang W, Zhou J, Yu S W, et al. Chinese Journal of Applied Mechanics, 2018, 35(1), 154 (in Chinese). 张炜, 周剑, 于世伟, 等. 应用力学学报, 2018, 35(1), 154. 65 Zhang W, Tan J J, Zhang S, et al. Tribology, 2022, 42(2), 386 (in Chinese). 张炜, 谈健君, 张帅, 等. 摩擦学学报, 2022, 42(2), 386. 66 Gu M, Jiao M H, Sun L, et al. Hot Working Technology, 2014, 43(9), 109 (in Chinese). 谷曼, 焦明华, 孙龙, 等. 热加工工艺, 2014, 43(9), 109. 67 Yang M, Zhou M C, Wang H, et al. Journal of Plasticity Engineering, 2018, 25(2), 128 (in Chinese). 杨梅, 周梦成, 王浩, 等. 塑性工程学报, 2018, 25(2), 128. 68 Yohannes B, Gonzalez M, Abebe A, et al. Powder Technology, 2015, 274, 372. 69 Zhou M, Huang S, Lei Y, et al. Journal of Advanced Mechanical Design Systems and Manufacturing, 2018, 12(2), 37. 70 Keshavarz S, Khoei A R, Khaloo A R. Materials & Design, 2008, 29(6), 1199. 71 Meng F, Liu K, Qin T. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9), 430. 72 Wang D G, Wu Y C, Jiao M H, et al. Journal of Mechanical Engineering, 2008(1), 205 (in Chinese). 王德广, 吴玉程, 焦明华, 等. 机械工程学报, 2008(1), 205. 73 Wang D G, Jiao M H, Yu J W, et al. China Mechanical Engineering, 2007(20), 2493 (in Chinese). 王德广, 焦明华, 俞建卫, 等. 中国机械工程, 2007(20), 2493. 74 Guo B, Ge C C, Yan Y N, et al. Hot Working Technology, 2012, 41(18), 64 (in Chinese). 郭彪, 葛昌纯, 颜永年, 等. 热加工工艺, 2012, 41(18), 64. 75 Dong D, Huang X, Cui J, et al. Advanced Powder Technology, 2020, 31(10), 4354. 76 Dong D, Huang X, Li G, et al. Materials Chemistry and Physics, 2020, 253, 123449. 77 Liu Y L, Zeng Y. Powder Metallurgy Technology, 2020, 38(4), 262 (in Chinese). 刘义伦, 曾洋. 粉末冶金技术, 2020, 38(4), 262. 78 Zheng Z S, Xu D, Lei X Y, et al. Journal of Materials Engineering, 2012(7), 10 (in Chinese). 郑洲顺, 徐丹, 雷湘媛, 等. 材料工程, 2012(7), 10.