Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23010046-9    https://doi.org/10.11896/cldb.23010046
  无机非金属及其复合材料 |
高压作用下水泥基粉末材料的接触硬化研究综述
张超1,2, 张子龙1, 黄伟1,2,3,*, 潘阿馨2, 赖志超2, 吴天赐4, 黄醒东4
1 福州大学先进制造学院,福建 晋江 362200
2 福州大学土木工程学院,福州 350108
3 晋江市福大科教园区发展中心,福建 晋江 362200
4 泉州鲤城协兴机械制造有限公司,福建 南安 362300
Review on the Contact Hardening Performance of Cement-based Powder Materials Under High Pressure
ZHANG Chao1,2, ZHANG Zilong1, HUANG Wei1,2,3,*, PAN Axin2, LAI Zhichao2, WU Tianci4, HUANG Xingdong4
1 Advanced Manufacturing College of Fuzhou University, Jinjiang 362200, Fujian, China
2 College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
3 Fuzhou University Science and Education Park Development Center of Jinjiang City, Jinjiang 362200, Fujian, China
4 Quanzhou Licheng Xiexing Machinery Manufacturing Co., Ltd., Nan’an 362300, Fujian, China
下载:  全 文 ( PDF ) ( 25106KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在高压作用下,一些具有无定型相的水泥基粉末材料会发生接触硬化现象,粉末颗粒在压力作用下发生缩聚运动,并在粉末颗粒间形成结构键,进而快速形成具有一定强度及耐水性的人造石材。本文综述了压力作用下水泥基粉末材料接触硬化的成键机理以及粉末水分含量、干燥条件、钙硅比、压制过程对其接触硬化性能影响的研究进展。相关研究结果表明,压力作用下粉末颗粒间会形成氢键、范德华力、固体桥键等结构键;粉末水分含量是影响接触硬化性能的重要因素,在压力作用下,水分可以改变粉末颗粒的表面性质并影响颗粒之间的结合,进而改变压制成品的力学性能;钙硅比对接触硬化性能的影响显著,不同粉末材料在压制时的最佳钙硅比亦是不同;摩擦力的存在降低了压制效率,造成压制成品密度、强度分布不均匀,润滑剂的加入可以有效降低摩擦力的影响;此外,降低压制模具高径比并使用双面压制可有效提升压制成品的质量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张超
张子龙
黄伟
潘阿馨
赖志超
吴天赐
黄醒东
关键词:  水泥基粉末材料  接触硬化  无定型相  结构键  水分含量  钙硅比  压制工艺    
Abstract: Under high pressure, some cement-based material powders with amorphous phase will undergo contact hardening, poly-condensation movement was occurred under pressure, and structural bond with certain strength will be formed between the powder particles, so as to quickly obtain artificial stone with certain strength and water resistance. In this paper, the bonding mechanism of cement-based material powder contact hardening under pressure and the effects of powder moisture content, drying conditions, calcium silicon ratio and pressing process on contact hardening performance are reviewed. Related research results show that hydrogen bonds, van der Waals forces, solid bridge bonds and other structural bonds are formed between powder particles under pressure. The moisture content of powder is an important factor affecting the contact hardening performance. Under pressure, the moisture can change the surface properties of powder particles and affect the bonding between particles, thereby influencing the mechanical properties of compaction products. The effect of calcium silicon ratio has a significant effect on the contact hardening properties, and the optimum calcium silicon ratio for different powder materials under pressing is also different. The existence of friction reduces the compaction efficiency, resulting in uneven distribution of density and strength of compacted products. The addition of lubricant can effectively reduce the influence of friction. In addition, reducing the height-diameter ratio of pressing die and using double-sided pressing can effectively improve the quality of the compaction products.
Key words:  cement-based powder material    contact hardening    amorphous phase    structural bond    moisture content    calcium silicon ratio    compacting technology
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52178464)
通讯作者:  *黄伟,福州大学土木工程学院助理研究员、硕士研究生导师。2010年7月本科毕业于重庆大学材料科学与工程学院,2017年7月在东南大学材料科学与工程专业经过东南大学孙伟院士与Karen Scrivener教授联合培养下取得博士学位。2017年担任福州大学土木工程学院助理研究员、硕士研究生导师;2019年至今于垒知控股集团股份有限公司从事博士后研究。主要从事超高性能/超高延性水泥基复合材料、水泥水化及微结构演变、固体废弃物综合利用、混凝土海洋环境耐久性、高性能混凝土外加剂等相关研究工作。在Cement and Concrete Composites等国际重要刊物发表了多篇SCI论文。WeiHuang@fzu.edu.cn   
作者简介:  张超,福州大学土木工程学院研究员、博士研究生导师。2011 年6 月博士毕业于福州大学桥梁与隧道工程专业。2011—2012 年在台湾地震工程研究中心担任访问学者;2015—2017 年在澳大利亚科廷大学从事博士后研究;2018—2021年在北京工业大学从事博士后研究,师从杜修力院士。主要从事ECC 混凝土材料力学性能及结构抗震设计的研究工作。
引用本文:    
张超, 张子龙, 黄伟, 潘阿馨, 赖志超, 吴天赐, 黄醒东. 高压作用下水泥基粉末材料的接触硬化研究综述[J]. 材料导报, 2024, 38(16): 23010046-9.
ZHANG Chao, ZHANG Zilong, HUANG Wei, PAN Axin, LAI Zhichao, WU Tianci, HUANG Xingdong. Review on the Contact Hardening Performance of Cement-based Powder Materials Under High Pressure. Materials Reports, 2024, 38(16): 23010046-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010046  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23010046
1 Liu D T, Shen Z Z, Xu L Q, et al. Journal of China Coal Society, 2020, 45(S1), 263 (in Chinese).
刘得潭, 沈振中, 徐力群, 等. 煤炭学报, 2020, 45(S1), 263.
2 Li Q, Liu S X, Su P, et al. Journal of Vibration and Shock, 2008(10), 23 (in Chinese).
李清, 刘绍兴, 苏鹏, 等. 振动与冲击, 2008(10), 23.
3 Feng K, He C, Xiao M Q. China Civil Engineering Journal, 2016, 49(8), 99 (in Chinese).
封坤, 何川, 肖明清. 土木工程学报, 2016, 49(8), 99.
4 Hu X, Shi C J, Yuan Q, et al. Cement and Concrete Composites, 2020, 106, 103465.
5 Xu J X, Zheng K R, Chen L, et al. Advances in Cement Research, 2021, 301, 1751.
6 Scott A, Alexander M G. Cement and Concrete Research, 2016, 89, 45.
7 Rivard P, Bérubé M, Ballivy G, et al. Cement and Concrete Research, 2003, 33(6), 927.
8 Glukhovsky, Runova, Maxcunov. Contact-hardening cementitious materials and compounds, Chongqing University Press, China, 2004, pp. 135 (in Chinese).
格鲁荷夫斯基, 鲁诺娃, 马克苏诺夫. 接触硬化胶凝材料及复合材料, 重庆大学出版社, 2004, pp.135.
9 Solonenko A P, Blesman A I, Polonyankin D A. Materials Characterization, 2020, 161, 110158.
10 Xu B Y, Wang T J, Li S, et al. Chinese Science Bulletin, 2022, 67(8), 784 (in Chinese).
徐北瑶, 王体健, 李树, 等. 科学通报, 2022, 67(8), 784.
11 Wang H C, Jin J, Liu S, et al. Journal of Central South University (Science and Technology), 2021, 52(7), 2137 (in Chinese).
王海成, 金娇, 刘帅, 等. 中南大学学报(自然科学版), 2021, 52(7), 2137.
12 Li T Z, Zhu X Q, Zhou X T, et al. Materials Reports, 2014, 28(19), 95 (in Chinese).
黎庭州, 朱孝钦, 周新涛, 等. 材料导报, 2014, 28(19), 95.
13 Zhang Y S, Dong D, Xiao Y, et al. Chinese Science Bulletin, 2021, 66(34), 4466 (in Chinese).
张永生, 董舵, 肖逸, 等. 科学通报, 2021, 66(34), 4466.
14 Lieberman R N, Knop Y, Palmerola N M. Journal of Cleaner Production, 2015, 238, 117880.
15 Li M H, Yang Z Q, Wang Y T, et al. Journal of China University of Mining & Technology, 2015, 44(4), 650 (in Chinese).
李茂辉, 杨志强, 王有团, 等. 中国矿业大学学报, 2015, 44(4), 650.
16 Song W L, Zhu Z D, Pu S Y, et al. Materials Reports, 2020, 34(22), 22070 (in Chinese).
宋维龙, 朱志铎, 浦少云, 等. 材料导报, 2020, 34(22), 22070.
17 Qin S H, Ni X J, Cao H M, et al. Journal of Building Structures, 2010, 31(8), 94 (in Chinese).
秦士洪, 倪校军, 曹桓铭, 等. 建筑结构学报, 2010, 31(8), 94.
18 Pu X C, Qin L C, Yan W N. Journal of the Chinese Ceramic Society, 1999(2), 16 (in Chinese).
蒲心诚, 秦力川, 严吴南. 硅酸盐学报, 1999(2), 16.
19 Peng X Q, Wang S P, Huang T, et al. Journal of Hunan University (Natural Sciences), 2011, 38(12), 8 (in Chinese).
彭小芹, 王淑萍, 黄滔, 等. 湖南大学学报(自然科学版), 2011, 38(12), 8.
20 Wang S P. Contact-hardening behaviour and mechanism of amorphous calcium silicate hydrate and its potential applications. Ph. D. Thesis, Chongqing University, China, 2016 (in Chinese).
王淑萍. 非晶态水化硅酸钙接触硬化过程动力学及胶凝机理研究. 博士学位论文, 重庆大学, 2016.
21 Hu S G, He Y J. Journal of Wuhan University of Technology, 2006(3), 61 (in Chinese).
胡曙光, 何永佳. 武汉理工大学学报, 2006(3), 61.
22 Liu Z B, Zong Y B, Ma H Y, et al. Chinese Journal of Engineering, 2015, 37(6), 757 (in Chinese).
刘召波, 宗燕兵, 马浩源, 等. 工程科学学报, 2015, 37(6), 757.
23 Beaudoin J, Raki L, Marchand J, et al. Journal of Materials Science, 2003, 38(24), 4957.
24 Alizadeh R, Beaudoin J J, Raki L. Materials and Structures, 2011, 44(1), 13.
25 Jennings S. U.S. patent, US005635292, 1994.
26 Stemmermann K G. U.S. patent, US007807078B2, 2003.
27 Liu X, Feng P, Shen X Y, et al. Materials Reports, 2021, 35(9), 9157 (in Chinese).
刘新, 冯攀, 沈叙言, 等. 材料导报, 2021, 35(9), 9157.
28 Khoshnazar R, Alizadeh R, Beaudoin J J, et al. Materials and Structures, 2015, 48, 67.
29 Wang S P, Peng X Q, Tang L, et al. Construction and Building Materials, 2021, 278, 122374.
30 Wang S P, Peng X Q, Tang L, et al. Materials, 2018, 11(12), 2367.
31 Li B, Chen W. Journal of the Chinese Ceramic Society, 2019, 47(8), 1095 (in Chinese).
李博, 陈伟. 硅酸盐学报, 2019, 47(8), 1095.
32 Pellenq R J M, Lequeux N, Van Damme H. Cement and Concrete Research, 2008, 38(2), 159.
33 Conceição J, Estanqueiro M, H Amaral M, et al. American Journal of Medical Sciences and Medicine, 2014, 2(4), 71.
34 Denny P J. Powder Technology, 2002, 127(2), 162.
35 Johansson B, Alderborn G. International Journal of Pharmaceutics, 1996, 132(1), 207.
36 Zhang Z, Yan Y, Qu Z, et al. Cement and Concrete Research, 2022, 159, 106858.
37 Fonseca P C, Jennings H M, Andrade J E. Mechanics of Materials, 2011, 43(8), 408.
38 Yaphary Y L, Lau D, Sanchez F, et al. Construction and Building Materials, 2020, 243, 118283.
39 Allen A J, Thomas J J, Jennings H M. Nature Materials, 2007, 6(4), 311.
40 Morales-Florez V. Journal of Materials Science, 2013, 48(14), 5022.
41 Alizadeh R, Beaudoin J J, Raki L. Cement and Concrete Composites, 2010, 32(5), 369.
42 Zhou Y. Study on the microstructure and properties of calcium silicate hydrates based on molecular dynamics simulation. Ph.D.Thesis, Southeast University, China, 2018 (in Chinese).
周扬. 基于分子动力学的水化硅酸钙的微结构与性能研究. 博士学位论文, 东南大学, 2018.
43 Li J, Zhang W, Monteiro P J M. Cement and Concrete Research, 2021, 143, 106371.
44 Hou D S, Yu J, Zhang J R, et al. Journal of Hydraulic Engineering, 2021, 52(1), 34 (in Chinese).
侯东帅, 于娇, 张津瑞, 等. 水利学报, 2021, 52(1), 34.
45 Hiroaki Masuda K. Powder Technology, 2006, 416.
46 Wang S P, Peng X Q, Tao Z, et al. Construction and Building Materials, 2017, 136, 465.
47 Zheng Q, He Z, Cai X H. Journal of Hydraulic Engineering, 2014, 45(2), 205 (in Chinese).
郑巧, 何真, 蔡新华. 水利学报, 2014, 45(2), 205.
48 Zheng Q, He Z. Engineering Journal of Wuhan University, 2013, 46(5), 583 (in Chinese).
郑巧, 何真. 武汉大学学报(工学版), 2013, 46(5), 583.
49 Gan X P. Journal of the Chinese Ceramic Society, 1996(6), 23 (in Chinese).
甘新平. 硅酸盐学报, 1996(6), 23.
50 Foley E M, Kim J J, Reda Taha M M. Cement and Concrete Research, 2012, 42(9), 1225.
51 Pelisser F, Gleize P J P, Mikowski A. The Journal of Physical Chemistry C, 2012, 116(32), 17219.
52 Lothenbach B, Nonat A. Cement and Concrete Research, 2015, 78, 57.
53 Guo L, Wang Z K, Guo L X, et al. Chinese Journal of Materials Research, 2022, 36(4), 278 (in Chinese).
郭磊, 王泽坤, 郭利霞, 等. 材料研究学报, 2022, 36(4), 278.
54 Cai X, Xi X G, Lyu H J, et al. Bulletin of the Chinese Ceramic Society, 2018, 37(3), 800 (in Chinese).
蔡星, 奚新国, 吕洪杰, 等. 硅酸盐通报, 2018, 37(3), 800.
55 Yan J Y, Song Y M, Wang Z J, et al. Materials Reports, 2016, 30(S1), 416 (in Chinese).
闫京勇, 宋远明, 王志娟, 等. 材料导报, 2016, 30(S1), 416.
56 Xu W, Wu X L. Bulletin of the Chinese Ceramic Society, 2018, 37(4), 1294 (in Chinese).
徐文, 武小雷. 硅酸盐通报, 2018, 37(4), 1294.
57 Gu M, Jiao M H, Sun L, et al. Hot Working Technology, 2015, 44(5), 125 (in Chinese).
谷曼, 焦明华, 孙龙, 等. 热加工工艺, 2015, 44(5), 125.
58 Güner F, Cora  N, Sofuolu H. Tribology International, 2018, 122, 125.
59 Nor S S M, Rahman M M, Tarlochan F, et al. Journal of Materials Processing Technology, 2008, 207(1-3), 118.
60 Yilmaz F, Hong S. Wear, 2013, 306(1-2), 179.
61 Wang Y B, Wang F Z, Wang Y K, et al. Acta Materiae Compositae Sinica, 2019, 36(12), 2902 (in Chinese).
王永滨, 王发展, 王雁琨, 等. 复合材料学报, 2019, 36(12), 2902.
62 Wang L, Zhu D C, Cheng G X. Surface Technology, 2015, 44(5), 72 (in Chinese).
王莉, 朱达川, 陈国需. 表面技术, 2015, 44(5), 72.
63 Zhu W T, Fu Y W, Li H J, et al. Lubrication Engineering, 2012, 37(11), 45 (in Chinese).
朱文婷, 付业伟, 李贺军, 等. 润滑与密封, 2012, 37(11), 45.
64 Zhang W, Zhou J, Yu S W, et al. Chinese Journal of Applied Mechanics, 2018, 35(1), 154 (in Chinese).
张炜, 周剑, 于世伟, 等. 应用力学学报, 2018, 35(1), 154.
65 Zhang W, Tan J J, Zhang S, et al. Tribology, 2022, 42(2), 386 (in Chinese).
张炜, 谈健君, 张帅, 等. 摩擦学学报, 2022, 42(2), 386.
66 Gu M, Jiao M H, Sun L, et al. Hot Working Technology, 2014, 43(9), 109 (in Chinese).
谷曼, 焦明华, 孙龙, 等. 热加工工艺, 2014, 43(9), 109.
67 Yang M, Zhou M C, Wang H, et al. Journal of Plasticity Engineering, 2018, 25(2), 128 (in Chinese).
杨梅, 周梦成, 王浩, 等. 塑性工程学报, 2018, 25(2), 128.
68 Yohannes B, Gonzalez M, Abebe A, et al. Powder Technology, 2015, 274, 372.
69 Zhou M, Huang S, Lei Y, et al. Journal of Advanced Mechanical Design Systems and Manufacturing, 2018, 12(2), 37.
70 Keshavarz S, Khoei A R, Khaloo A R. Materials & Design, 2008, 29(6), 1199.
71 Meng F, Liu K, Qin T. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9), 430.
72 Wang D G, Wu Y C, Jiao M H, et al. Journal of Mechanical Engineering, 2008(1), 205 (in Chinese).
王德广, 吴玉程, 焦明华, 等. 机械工程学报, 2008(1), 205.
73 Wang D G, Jiao M H, Yu J W, et al. China Mechanical Engineering, 2007(20), 2493 (in Chinese).
王德广, 焦明华, 俞建卫, 等. 中国机械工程, 2007(20), 2493.
74 Guo B, Ge C C, Yan Y N, et al. Hot Working Technology, 2012, 41(18), 64 (in Chinese).
郭彪, 葛昌纯, 颜永年, 等. 热加工工艺, 2012, 41(18), 64.
75 Dong D, Huang X, Cui J, et al. Advanced Powder Technology, 2020, 31(10), 4354.
76 Dong D, Huang X, Li G, et al. Materials Chemistry and Physics, 2020, 253, 123449.
77 Liu Y L, Zeng Y. Powder Metallurgy Technology, 2020, 38(4), 262 (in Chinese).
刘义伦, 曾洋. 粉末冶金技术, 2020, 38(4), 262.
78 Zheng Z S, Xu D, Lei X Y, et al. Journal of Materials Engineering, 2012(7), 10 (in Chinese).
郑洲顺, 徐丹, 雷湘媛, 等. 材料工程, 2012(7), 10.
[1] 覃丽芳, 曲波, 史才军, 张祖华. 钙硅比对铝硅酸盐凝胶形成与特性的影响[J]. 材料导报, 2020, 34(12): 12057-12063.
[2] 林伟辉, 付甲, 王志华, 辛浩. 不同钙硅比水化硅酸钙力学性能的分子动力学模拟*[J]. 《材料导报》期刊社, 2017, 31(20): 158-163.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed