Please wait a minute...
材料导报  2024, Vol. 38 Issue (6): 22050200-7    https://doi.org/10.11896/cldb.22050200
  高分子与聚合物基复合材料 |
Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响
韩坤莹1, 门汝佳1, 郭美卿2, 雷志鹏1,*, 王心雨3, 王轶飞4, 石志杰1
1 太原理工大学电气与动力工程学院,煤矿电气设备与智能控制山西省重点实验室,太原 030024
2 太原理工大学机械与运载工程学院,太原 030024
3 普利茅斯大学工程、计算机与数学学院,普利茅斯 PL4 8AA
4 康涅狄格大学材料系,斯托尔斯 06066
Effects of Blending Al2O3@SiO2 Core-Shell Nanospheres on the Dielectric Properties and Space Charge Properties of Polypropylene
HAN Kunying1, MEN Rujia1, GUO Meiqing2, LEI Zhipeng1,*, WANG Xinyu3, WANG Yifei4, SHI Zhijie1
1 Shanxi Key Laboratory of Mining Electrical Equipment and Intelligent Control, College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 College of Mechanical and Vehicle Engineering, Taiyuan University of Technology, Taiyuan 030024, China
3 School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth PL4 8AA, United Kingdom
4 Institute of Materials Science, University of Connecticut, Storrs 06066, USA
下载:  全 文 ( PDF ) ( 14800KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究核壳结构Al2O3@SiO2球形纳米颗粒对聚丙烯(Polypropylene,PP)复合电介质性能的影响,本工作利用表面沉淀法合成了Al2O3@SiO2核壳纳米球,并制备了聚丙烯基Al2O3@SiO2核壳纳米球复合电介质,研究了添加不同含量Al2O3@SiO2核壳纳米球的聚丙烯纳米复合电介质的理化性能、介电谱和空间电荷特性。结果表明:添加Al2O3@SiO2核壳纳米球降低了聚丙烯复合电介质的储存模量,增强了其韧性;Al2O3@SiO2核壳纳米球添加量对聚丙烯复合电介质介电性能和空间电荷特性影响较明显,添加含量较低时,核壳结构Al2O3@SiO2纳米球增强了其与基体的相容性及界面区域的相互作用,受界面区及其对体内电荷密度和载流子迁移率的影响,聚丙烯复合电介质的相对介电常数和介质损耗因数均有所降低,且抑制了异极性空间电荷积聚,因此Al2O3@SiO2/PP复合电介质的介电性能和空间电荷特性得到提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩坤莹
门汝佳
郭美卿
雷志鹏
王心雨
王轶飞
石志杰
关键词:  纳米复合电介质  聚丙烯  核壳纳米球  介电特性  空间电荷    
Abstract: In order to study the effect of Al2O3@SiO2 core-shell nanoparticles on the properties of polypropylene (PP) nanocomposites, spherical Al2O3@SiO2 core-shell nanoparticles were synthesized by the surface precipitation method, and the PP nanocomposites with Al2O3@SiO2 core-shell nanospheres were prepared. The physicochemical properties, dielectric spectra, and space charge properties of PP nanocomposites with different contents of Al2O3@SiO2 nanoparticles were studied. The experimental results show that Al2O3@SiO2 nanospheres reduce the sto-rage modulus of PP nanocomposites and enhance their toughness. The filler content of Al2O3@SiO2 nanospheres has an evident effect on the dielectric properties and space charge properties. When the filler content is low, the core-shell structure of Al2O3@SiO2 nanospheres enhances the compatibility between fillers and the matrix and the interaction in the interface region, which further affects the charge density and carrier mobi-lity. Consequently, the relative permittivity and dielectric loss factor of PP nanocomposites decrease. The heterocharge accumulation is also suppressed, improving PP nanocomposites' dielectric and space charge properties.
Key words:  nanocomposite dielectric    polypropylene    core-shell nanospheres    dielectric property    space charge
出版日期:  2024-03-25      发布日期:  2024-04-07
ZTFLH:  TM21  
  TM85  
基金资助: 国家自然科学基金(51977137);中央引导地方科技发展资金项目(YDZJSX2021A021);山西省基础研究计划(202103021224115)
通讯作者:  *雷志鹏,太原理工大学电气与动力工程学院副教授、硕士研究生导师。2005年华东交通大学电气工程及其自动化专业本科毕业,2015年太原理工大学电气与动力工程学院电机与电器专业博士毕业后到太原理工大学工作至今。目前主要从事电气绝缘诊断与寿命评估、纳米复合电介质、智能电器等方面的研究工作。发表论文60余篇,包括IEEE Transactions on Dielectrics and Electrical Insulation、High Voltage、《高电压技术》《绝缘材料》等。   
作者简介:  韩坤莹,2019年6月、2022年6月分别于太原理工大学获得工学学士学位和硕士学位。目前主要研究领域为电气设备绝缘结构与特性。
引用本文:    
韩坤莹, 门汝佳, 郭美卿, 雷志鹏, 王心雨, 王轶飞, 石志杰. Al2O3@SiO2核壳纳米球添加对聚丙烯介电和空间电荷特性的影响[J]. 材料导报, 2024, 38(6): 22050200-7.
HAN Kunying, MEN Rujia, GUO Meiqing, LEI Zhipeng, WANG Xinyu, WANG Yifei, SHI Zhijie. Effects of Blending Al2O3@SiO2 Core-Shell Nanospheres on the Dielectric Properties and Space Charge Properties of Polypropylene. Materials Reports, 2024, 38(6): 22050200-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050200  或          http://www.mater-rep.com/CN/Y2024/V38/I6/22050200
1 Motyl E, Moron L, Kara K. Przeglad Elektrotechniczny, 2008, 84(10), 112.
2 Tuncer E, Sauers I, James D R, et al. Nanotechnology, 2007, 18(32), 325704.
3 Takada T, Hayase Y, Tananka Y, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1), 152.
4 Tian F Q, Yang C, He L J, et al. Transactions of China Electrotechnical Society, 2011, 26(3), 1 (in Chinese).
田付强, 杨春, 何丽娟, 等. 电工技术学报, 2011, 26(3), 1.
5 Lewis T J. IEEE Transactions on Dielectrics and Electrical Isulation, 1994, l(5), 812.
6 Tanaka T, Montanari G C, Mulhaupt R. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(5), 763.
7 Tanaka T. IEEE Transactions on Dielectrics and Electrical Insulation, 2005, 12(5), 914.
8 Dettmer R. IEEE Review, 1998, 44(6), 255.
9 Li S T, Yin G L, Chen G, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(5), 1523.
10 Tan Q, Cao Y, Irwin P. In: Conference Record of the 2007 International Conference on Solid Dielectrics. Winchester, 2007, pp. 411.
11 Lei Z P, Fabiani D, Bray T, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(3), 753.
12 Chen Y F, Zhao H, Dong L. Acta Materiae Compositae Sinica, 2022, 39(1), 126 (in Chinese).
陈宇飞, 赵辉, 董磊. 复合材料学报, 2022, 39(1), 126.
13 Cheng Z P, Yang Y, Li F S, et al. Transactions of Nonferrous Metals Society of China, 2008, 18(2), 378.
14 Chaudhary S, Andritsch T, Vaughan A S. In: Conference Record of the 2019 IEEE Conference on Electrical Insulation and Dielectric Phenomena. Richland, 2019, pp. 729.
15 Wu C L, Zhang M Q, Rong M Z. Acta Materiae Compositae Sinica, 2002, 19(6), 61 (in Chinese).
吴春蕾, 章明秋, 容敏智. 复合材料学报, 2002, 19(6), 61.
16 Murugaraj P, Mainwaring D, Mora-Huertas N. Journal of Applied Phy-sics, 2005, 98(5), 054304.
17 Rahim, N H, Lau K Y, Muhamad N A, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2019, 26(1), 284.
18 Smith R C, Liang C, Landry M, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(1), 187.
19 Montanari G C, Mazzanti G, Palmieri F, et al. In: Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials. Xi'an, 2000, pp. 38.
20 Lei Q Q, Tian F Q, Yang C, et al. Journal of Electrostatics, 2010, 68(3), 243.
[1] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[2] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[3] 汪晖, 王轲炜, 梁昭. NaCl干湿交替作用对复配水泥活性粉末混凝土性能的影响[J]. 材料导报, 2023, 37(23): 22070005-5.
[4] 秦唯铭, 杜冰, 朱绍伟, 陈立明, 李卫国, 樊振华. 环境温度对长玻纤增强聚丙烯单向拉伸力学性能的影响[J]. 材料导报, 2023, 37(20): 22030014-6.
[5] 张军, 郭乃胜, 吕欣, 褚召阳, 房辰泽. 聚酰胺基树脂型沥青路面浅槽快速修补材料的制备与性能研究[J]. 材料导报, 2023, 37(20): 22050191-7.
[6] 马仁博, 胡焕波, 沈婉婷, 吴唯. 聚丙烯酸丁酯/受阻酚阻尼杂化体系的相容性研究[J]. 材料导报, 2023, 37(15): 21120201-6.
[7] 梁宁慧, 周侃, 兰菲, 刘新荣, 邓志云. 玄武岩-聚丙烯粗纤维混凝土管承载力试验研究[J]. 材料导报, 2023, 37(11): 21100164-8.
[8] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[9] 刘忠柱, 赵伟, 潘玮, 李睢水, 郑国强, 李倩. 多壁碳纳米管改性等规聚丙烯复合材料的结构及性能研究[J]. 材料导报, 2023, 37(1): 20100004-6.
[10] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[11] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[12] 魏士俊, 何润合, 李永兵, 靳艳梅, 张兴祥. 聚丙烯腈分子量对锂硫电池比容量和循环稳定性的影响[J]. 材料导报, 2022, 36(22): 21080285-6.
[13] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 离子型聚丙烯酰胺原位修饰聚氨酯泡沫用于高效乳液分离[J]. 材料导报, 2022, 36(19): 21060195-6.
[14] 师晓凤, 马应霞, 李鑫, 康小雅, 李晓华, 杨海军. 静电纺聚丙烯腈基纳米纤维对重金属离子吸附性能的研究进展[J]. 材料导报, 2022, 36(18): 20090131-9.
[15] 张秉宗, 贡力, 杜强业, 梁颖, 宫雪磊, 杜秀萍. 西北盐渍干寒地区聚丙烯纤维混凝土耐久性损伤试验研究[J]. 材料导报, 2022, 36(17): 21030317-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed