Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22040127-7    https://doi.org/10.11896/cldb.22040127
  高分子与聚合物基复合材料 |
煤制油气化灰渣防灭火凝胶的制备及性能
张铎1,†,*, 孙伟1,†, 郭曦蔓1, 岑孝鑫1, 代爱萍2
1 西安科技大学安全科学与工程学院,西安 710054
2 西安科技大学化学与化工学院,西安 710054
Preparation and Properties of Coal-based Gasification Ash Fire-extinguishing Gel
ZHANG Duo1,†,*, SUN Wei1,†, GUO Ximan1, CEN Xiaoxin1, DAI Aiping2
1 School of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
2 School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
下载:  全 文 ( PDF ) ( 9644KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 针对煤制油气化灰渣堆积造成环境污染和固废资源浪费等问题,本研究提出以气化灰渣为基料、羟丙基甲基纤维素(HPMC)为胶凝剂,制备气化灰渣凝胶煤矿防灭火材料,使用扫描电镜和傅里叶红外光谱仪分析其微观形貌与表面官能团特征。考察了材料的胶凝时间、热稳定性及保水性,确定了气化渣凝胶最优配方为水灰比1∶1.25、HPMC添加量1.5%(质量分数)。该凝胶较好抑制了煤自燃过程中羟基、甲基、亚甲基、取代芳烃、醚碳氧键等官能团反应,与未经凝胶处理的煤样相比,经凝胶处理的煤样在80 ℃时芳香烃峰面积减小11.85%,脂肪烃峰面积减小43.07%,120 ℃时芳香烃峰面积减小27.36%,脂肪烃峰面积减小44.23%。凝胶处理的煤样在氧化升温过程中,100 ℃时CO浓度降低65.07%,200 ℃时CO浓度降低53.09%,C2H4浓度降低23.68%。微观和宏观结果表明,气化灰渣凝胶较好地抑制了煤自燃进程,阻化性能优于CaCl2,可有效防治煤自燃灾害,解决灰渣堆积问题,实现固废资源化利用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张铎
孙伟
郭曦蔓
岑孝鑫
代爱萍
关键词:  气化灰渣  煤自燃  防灭火  凝胶    
Abstract: Aiming at the problems of environmental pollution and waste of solid waste resources caused by the accumulation of coal-based gasification ash residues, coal mine fire extinguishing material, gasification ash residue gel, was prepared using gasification residue as the base material and hydroxypropyl methylcellulose (HPMC) as the gelling agent. Coal mine fire-extinguishing materials were analyzed by scanning electron microscope and Fourier transform infrared spectrometer to analyze their microscopic morphology and surface functional group characteristics. Factors such as gelation time, thermal stability and water retention were investigated, and the optimal formulation of the gasification slag gel was determined to be the water-cement ratio of 1∶1.25 and the addition of HPMC of 1.5%. The reaction of functional groups, such as hydroxyl, methyl, methylene, substituted aromatic hydrocarbons and carbon-oxygen bonds, was inhibited during the spontaneous combustion of coal. At 80 ℃, the peak area of aromatic hydrocarbons decreased by 11.85%, and the peak area of aliphatic hydrocarbons decreased by 43.07%. The peak area of aromatic hydrocarbons decreased by 27.36% and the peak area of aliphatic hydrocarbons decreased by 44.23% at 120 ℃. During the oxidative heating process of the gel-treated coal samples, the CO concentration decreased by 65.07% at 100 ℃. The CO concentration decreased by 53.09% and the C2H4 concentration decreased by 23.68% at 200 ℃. The microscopic and macroscopic results showed that the spontaneous combustion process of coal was inhibited better by the gasification ash slag gel. Its chemical resistance was better than that of CaCl2, which could effectively prevent coal spontaneous combustion disasters. This solves the problem of ash accumulation, and realizes the resource utilization of solid waste.
Key words:  gasification ash    coal spontaneous combustion    fire prevention    gel
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  X752  
基金资助: 陕西省技术创新引导专项(2021QFY04-05);榆林国家高新技术产业开发区科技计划项目(ZD-2020-15);榆林国家高新技术产业开发区科技计划项目(ZD-2021-05);榆林国家高新技术产业开发区科技计划项目(ZD-2021-13)
通讯作者:  *张铎,西安科技大学安全科学与工程学院副教授、硕士研究生导师。2010年西安科技大学数学与应用数学专业本科毕业,2014年西安科技大学安全技术及工程专业硕士毕业,2018年于西安科技大学安全科学与工程专业博士毕业后留校工作至今。目前主要从事煤自燃机理与防治技术、火灾监测预警技术与灾害应急处置等方面的教学与科研工作。发表学术论文30余篇(其中SCI/EI期刊检索论文15篇),包括Fuel、Powder Technology、Combustion Science and Technology、Advances in Materials Science and Engineering、《煤炭学报》《煤炭科学技术》等。孙伟,西安科技大学安全科学与工程学院硕士研究生,本科就读于长安大学兴华学院土木工程专业,目前主要研究方向为煤矿区固废材料深度综合资源化利用理论与技术。zhangd@xust.edu.cn   
作者简介:  †共同第一作者
引用本文:    
张铎, 孙伟, 郭曦蔓, 岑孝鑫, 代爱萍. 煤制油气化灰渣防灭火凝胶的制备及性能[J]. 材料导报, 2024, 38(3): 22040127-7.
ZHANG Duo, SUN Wei, GUO Ximan, CEN Xiaoxin, DAI Aiping. Preparation and Properties of Coal-based Gasification Ash Fire-extinguishing Gel. Materials Reports, 2024, 38(3): 22040127-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040127  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22040127
1 Qu J S, Zhang J B, Sun Z G, et al. Clean Coal Technology, 2020, 26(1), 184(in Chinese).
曲江山, 张建波, 孙志刚, 等. 洁净煤技术, 2020, 26(1), 184.
2 Zhou A N, Gao Y, Li Z, et al. Journal of Xi'an University of Science and Technology, 2021, 41(4), 575(in Chinese).
周安宁, 高影, 李振, 等. 西安科技大学学报, 2021, 41(4), 575.
3 Liu K P, Zhao H Y, Li Z Z, et al. Journal of Architecture and Civil Engineering, 2017, 34(5), 190(in Chinese).
刘开平, 赵红艳, 李祖仲, 等. 建筑科学与工程学报, 2017, 34(5), 190.
4 Zhao S W, Yao L Y, He H B, et al. Archives of Environmental Protection, 2019, 45(2), 84.
5 Lee Y, Bang J J, Kang S. Journal of Nanoscience and Nanotechnology, 2019, 19(4), 2193.
6 Aineto M, Acosta A, Iglesias I. Journal of the European Ceramic Society, 2006, 26(16), 3783.
7 Zhu D D, Miao S D, Xue B, et al. Water Air and Soil Pollution, 2019, 230(7), 155.
8 Yu W, Wang X B, Liu L J, et al. Journal of China Coal Society, DOI:10. 13225/j. cnki. jccs. FX21. 1105(in Chinese).
于伟, 王学斌, 刘莉君, 等. 煤炭学报, DOI:10. 13225/j. cnki. jccs. FX21. 1105.
9 Ai W, Liu S, Zhang J, et al. Journal of Applied Polymer Science, 2019, 136(30), 47803.
10 Zhang J, Zuo J, Ai W, et al. Journal of Hazardous Materials, 2020, 384, 121347.
11 Zhai X W, Hu M, Ma B H, et al. Journal of Xi'an University of Science and Technology, 2021, 41(5), 772(in Chinese).
翟小伟, 胡冕, 马博昊, 等. 西安科技大学学报, 2021, 41(5), 772.
12 Zhang Y N, Hou Y C, Liu B, et al. Chinese Journal of Engineering, 2021, 43(10), 1295(in Chinese).
张嬿妮, 侯云超, 刘博, 等. 工程科学学报, 2021, 43(10), 1295.
13 Ren X F, Hu X M, Xue D, et al. Journal of Hazardous Materials, 2019, 371, 643.
14 Wang L, Liu Z Y, Yang H Y, et al. Fuel, 2021, 306, 121757.
15 Xi Y Y, Shen Y, Liu J H, et al. Materials Reports, 2021, 35(S2), 262(in Chinese).
席雅允, 沈玉, 刘娟红, 等. 材料导报, 2021, 35(S2), 262.
16 Zheng H Y, Wang Q, Wang Y, et al. Materials Reports, 2021, 35(S2), 649(in Chinese).
郑海宇, 王琴, 王悦, 等. 材料导报, 2021, 35(S2), 649.
17 Li T Z, Wu F, Li H, et al. Chinese Journal of Environmental Enginee-ring, 2022, 16(7), 2356(in Chinese).
李肽脂, 吴锋, 李辉, 等. 环境工程学报, 2022, 16(7), 2356.
18 Zhang H A, Wang Z W. Concrete, 2022(7), 114(in Chinese).
张慧爱, 王自卫. 混凝土, 2022(7), 114.
19 Ma L, Wang D, Wang Y, et al. Energy & Fuels, 2016, 30, 8904.
20 Wang J F, Dong K L, Liang Z W, et al. 2020, 51(10), 126(in Chinese)
王俊峰, 董凯丽, 梁择文, 等. 煤矿安全, 2020, 51(10), 126.
21 Bu Z L, Zhang D, Lyu Y Y, et al. Adhesion, 2022, 49(1), 12(in Chinese).
卜祝龙, 张铎, 吕英英, 等. 粘接, 2022, 49(1), 12.
22 Zhang T, Liu Z, Su Z F, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(2), 520(in Chinese).
张彤, 刘泽, 苏壮飞, 等. 硅酸盐通报, 2022, 41(2), 520.
23 Mozgawa W, Krol M, Dyczek J, et al. Spectrochim Acta, 2014, 132, 889.
24 Dlapa P, Bodi M B, Mataix-Solera J, et al. Catena, 2013, 108, 38.
25 Chandrasekhar S, Pramada P N, Praveen L. Journal of Materials Science, 2005, 40, 6535.
26 Yu W, Wang X B, Bai Y H, et al. Clean Coal Technology, 2021, 27(3), 81(in Chinese).
于伟, 王学斌, 白永辉, 等. 洁净煤技术, 2021, 27(3), 81.
27 Lodge T P, Maxwell A L, Lott J R, et al. Biomacromolecules, 2018, 19(3), 816.
28 Ma L, Huang X, Yang Y B, et al. Fire Science and Technology, 2020, 39(6), 821(in Chinese).
马砺, 黄霄, 杨元博, 等. 消防科学与技术, 2020, 39(6), 821.
29 Chen L M, Wang T, Li K. Polymer Materials Science & Engineering, 2016, 32(11), 156(in Chinese).
陈丽嫚, 汪涛, 李康. 高分子材料科学与工程, 2016, 32(11), 156.
30 Kim M H, Park H, Shin J Y, et al. Carbohydrate Polymers, 2018, 196, 414.
31 Qin B T, Zhong X X, Wang D M, et al. Coal Science and Technology, 2021, 49(1), 66(in Chinese).
秦波涛, 仲晓星, 王德明, 等. 煤炭科学技术, 2021, 49(1), 66.
32 Zhang D, Cen X, Wang W, et al. Combustion Science and Technology, 2021(2336), 1.
33 Zhao J, Deng J, Chen L, et al. Energy, 2019, 181(15), 136.
34 Zhang Y N, Liu C H, Shu P, et al. Journal of Safety Science and Technology, 2021, 17(11), 98(in Chinese).
张嬿妮, 刘春辉, 舒盼, 等. 中国安全生产科学技术, 2021, 17(11), 98.
35 Deng J, Zhao J Y, Zhang Y N, et al. Journal of China Coal Society, 2016, 41(5), 1164(in Chinese).
邓军, 赵婧昱, 张嬿妮, 等. 煤炭学报, 2016, 41(5), 1164.
36 Zhang D, Cen X X, Wang W F, et al. Fuel, 2021, 288, 119635.
37 Liang Z W, Wang J F, Dong K L, et al. China Safety Science Journal, 2021, 31(7), 113(in Chinese).
梁择文, 王俊峰, 董凯丽, 等. 中国安全科学学报, 2021, 31(7), 113.
[1] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[2] 王雪怡, 王智远, 余伟, 周冰鑫, 徐榕, 杨兴东, 何辉超, 贾碧. 高压辅助溶胶-凝胶法制备La掺杂TiO2光催化剂及其可见光降解甲基橙研究[J]. 材料导报, 2024, 38(2): 22080236-5.
[3] 李杰, 胡祖明, 于俊荣, 王彦, 诸静. 聚对苯二甲酰对苯二胺气凝胶纤维的制备与性能[J]. 材料导报, 2024, 38(2): 22080102-6.
[4] 邵慧龙, 费志方, 李肖华, 赵爽, 李昆锋, 杨自春. 玻璃微珠/PI气凝胶复合材料的制备与吸声性能研究[J]. 材料导报, 2023, 37(9): 21090097-6.
[5] 吕春艳, 刘杨, 张文君, 王晴. 基于硅气凝胶包载尼莫地平新型载药系统的构建及胃肠稳定性研究[J]. 材料导报, 2023, 37(6): 21030015-6.
[6] 饶春兴, 廖静文, 张雪慧, 武晓刚, 王艳芹, 陈维毅. 荧光水凝胶传感器及其传感响应机制研究进展[J]. 材料导报, 2023, 37(5): 21010130-8.
[7] 郭鑫, 苏宏玺, 赵鸿, 欧阳成伟, 强小虎, 黄大建. 海泡石/原位生成氢氧化镁对琼脂基气凝胶的性能影响研究[J]. 材料导报, 2023, 37(5): 21090278-8.
[8] 肖颖, 梁耕源, 雷博文, 贺雍律, 赵文姝, 鞠苏, 张鉴炜. 用于能量收集的离子热电材料研究进展[J]. 材料导报, 2023, 37(4): 22020174-9.
[9] 王丽丽, 唐杰, 秦陆洋, 李雪莎, 聂朝胤. 基于硅溶胶形核剂的柔性二氧化硅气凝胶的研究[J]. 材料导报, 2023, 37(24): 22080230-6.
[10] 于本田, 杨玉祥, 刘江, 王永刚, 王朋勇, 谢超. 改性SiO2气凝胶水泥基复合砂浆性能及冻融损伤研究[J]. 材料导报, 2023, 37(23): 22040197-6.
[11] 张星星, 高相东, 董余兵, 段灯, 李效民. SiO2气凝胶@聚合物复合材料的制备方法及性能研究进展[J]. 材料导报, 2023, 37(21): 22040191-11.
[12] 何贤会, 杨培昕, 卢小鸾, 汤陆扬, 付阳洋, 彭黔荣, 杨敏. 用于阴道黏膜给药的纳米胶束复合温敏水凝胶的制备及性能评价[J]. 材料导报, 2023, 37(19): 22040117-7.
[13] 李晓玉, 连海兰. 仿贻贝水凝胶的研究进展[J]. 材料导报, 2023, 37(19): 21120186-11.
[14] 周鑫, 关水, 孙长凯. 基于壳聚糖/黄原胶互穿网络的导电水凝胶支架制备及性能研究[J]. 材料导报, 2023, 37(18): 22030238-8.
[15] 易周, 崔世宇, 罗军明, 初雨轩. 溶胶-凝胶法制备核壳结构MoSi2@Al2O3颗粒及其形成机理[J]. 材料导报, 2023, 37(16): 22010273-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed