Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22100249-7    https://doi.org/10.11896/cldb.22100249
  无机非金属及其复合材料 |
Sm3+掺杂LaOF荧光粉的制备及光学性能
贾宇盟, 史忠祥*, 王晶*, 李翔
大连交通大学辽宁省无机超细粉体制备及应用重点实验室,辽宁 大连 116028
Synthesis and Luminescence Properties of Sm3+ Doped LaOF Phosphors
JIA Yumeng, SHI Zhongxiang*, WANG Jing*, LI Xiang
Liaoning Key Laboratory for Fabrication and Application of Superfine Inorganic Powders, Dalian Jiaotong University, Dalian 116028, Liaoning, China
下载:  全 文 ( PDF ) ( 9723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以LaOF晶体为基质,利用水热辅助固相法制备出一系列Sm3+掺杂LaOF荧光粉。采用 XRD、TEM、荧光光谱仪等测试手段对所制得的样品的相结构、微观形貌及光学性能进行表征。结果表明,LaOF在不同煅烧温度下会产生四方相和斜方六面体两种不同晶相。此外,由于受跃迁概率和局域对称性的影响,Sm3+掺杂四方相LaOF发光强度更大,其各浓度样品在405 nm光激发下,于567 nm、605 nm、651 nm和710 nm等处均出现了Sm3+的特征发射峰,并且随着Sm3+掺杂量的增加,其发光强度呈现先增大后减小的趋势,且当Sm3+掺杂量为3.0%(摩尔分数,下同)时,La1-xSmxOF样品发光强度达最大值。此外,所得样品的色纯度极高,其多个激发峰均位于商用近紫外和蓝光LED芯片的发射波长附近,可实现多种波长激发下的可见橙光发射。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贾宇盟
史忠祥
王晶
李翔
关键词:  水热辅助固相法  稀土元素  钐掺杂  光学性能    
Abstract: A series of Sm3+ doped LaOF phosphors were prepared by hydrothermal assisted solid-state method using LaOF crystal as matrix. The phase structure, microstructure and optical properties of the prepared samples were characterized by XRD, TEM and fluorescence spectrometer. The results show that at different calcination temperatures, two different crystalline phases, tetragonal and rhombohedral, are produced. Moreover, due to the transition odds and local symmetry, the Sm3+ doped tetragonal phase LaOF has a greater luminous intensity, and the characteristic emission peaks of Sm3+ appear at 567 nm, 605 nm, 651 nm and 710 nm under 405 nm excitation. With the increase of Sm3+ doping amount, the emission intensity of Sm3+ first increases and then decreases. When the doping amount of Sm3+ is 3.0mol%, the luminescence intensity of La1-xSmxOF samples reaches the maximum. In addition, the excitation purity of the obtained samples is extremely high, and many excitation peaks of the samples are located near the emission wavelength of commercial near ultraviolet and blue LED chips, which can achieve visible orange light emission under excitation of various wavelengths.
Key words:  hydrothermal assisted solid phase method    rare earth elements    samarium doping    optical property
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TB34  
基金资助: 中国石油天然气股份有限公司石油化工研究院项目(2021210207000265)
通讯作者:  *史忠祥,2020年于大连交通大学获博士学位,现为大连交通大学材料科学与工程学院材料实验中心实验师。目前主要从事稀土掺杂发光材料的制备及发光性能的研究。发表论文20余篇,包括Journal of Luminescence、Journal of Materials Science Materials in Electronics、Journal of Rare Earths等。492670794@qq.com;
王晶,教授/博士,现为大连交通大学材料科学与工程学院材料科学与工程系教师。主要从事无机非金属粉体材料的研究。在Ceramics International、Journal of Alloys and Compounds、Journal of Luminescence、Journal of Rare Earths、《无机材料学报》《无机化学学报》等发表论文60余篇,出版学术专著一部。wangjing@djtu.edu.cn   
作者简介:  贾宇盟,2012年6月、2016年6月分别于大连交通大学获得理学学士学位和工学硕士学位。现为大连交通大学材料科学与工程学院博士研究生,在王晶教授的指导下进行研究。目前主要研究领域为稀土掺杂发光材料的制备及发光性能。
引用本文:    
贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
JIA Yumeng, SHI Zhongxiang, WANG Jing, LI Xiang. Synthesis and Luminescence Properties of Sm3+ Doped LaOF Phosphors. Materials Reports, 2024, 38(3): 22100249-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100249  或          http://www.mater-rep.com/CN/Y2024/V38/I3/22100249
1 Lin C C, Liu R S. Journal of Physical Chemistry Letters, 2011, 2(11), 1268.
2 Qi Z M, Shi C S, Zhang W W, et al. Applied Physics Letters, 2002, 81(15), 2857.
3 Yan C H, Sun L D, Liao C S, et al. Applied Physics Letters, 2003, 82(20), 3511.
4 Xu G T, Liang P, Wang L, et al. Spectroscopy and Spectral Analysis, 2013, 33(11), 2907(in Chinese).
徐国堂, 梁培, 王乐, 等. 光谱学与光谱分析, 2013, 33(11), 2907.
5 Zhao D, Cui X Q, Fan Y P, et al. Optik, 2021, 226, 165931.
6 Gao D L, Zheng H R, Zhang X Y, et al. Applied Physics Letters, 2011, 98(1), 011907.
7 Cheng X R, Ma X C, Zhang H J, et al. Physica B-Condensed Matter, 2017, 521, 270.
8 Moos H W. Journal of Luminescence, 1970, 1-2, 106.
9 Zachariasen W H. Acta Crystallographica A-Foundation and Advances, 1951, 4, 231.
10 Yao C F, Wang M H, Huang P, et al. Journal of Ceramics, 2018, 39(5), 607(in Chinese).
姚成方, 王明辉, 黄平, 等. 陶瓷学报, 2018, 39(5), 607.
11 Fu Z X, Liu B R. Acta Photonica Sinica, 2011, 40(2), 227(in Chinese).
伏振兴, 刘碧蕊. 光子学报, 2011, 40(2), 227.
12 Li P L, Wang Z J, Yang Z P, et al. Materials Letters, 2009, 63(9-10), 751.
13 Sun Y J, Qiu P Y, Zhang C L, et al. Ciesc Journal, 2014, 65(7), 2620(in Chinese).
孙容瑾, 邱培宇, 张春雷, 等. 化工学报, 2014, 65(7), 2620.
14 Pekgözlü. Optik, 2016, 127(8), 4114.
15 Liu R H, Huang X W, He H Q, et al. Journal of the Chinese Society of Rare Earths, 2012, 30(3), 265(in Chinese).
刘荣辉, 黄小卫, 何华强, 等. 中国稀土学报, 2012, 30(3), 265.
16 Bünzli J C G. Chemical Reviews, 2010, 110(5), 2729.
17 Cai J J, Pan H H, Wang Y. International Journal of Minerals Metallurgy and Materials, 2012, 19(7), 663.
18 Li P L, Wang Z J, Yang Z P, et al. Materials Letters, 2009, 63(9-10), 751.
19 Shi Z X, Wang J, Shi J, et al. Journal of Materials Science, 2021, 32(21), 26086.
20 Du P, Huang X Y, Yu J S. Inorganic Chemistry Frontiers, 2017, 4(12), 1987.
21 Shi Z X, Wang J, Guan X. Journal of the Chinese Ceramic Society, 2018, 46(1), 136(in Chinese).
史忠祥, 王 晶, 关 昕. 硅酸盐学报, 2018, 46(1), 136.
22 Dwivedi A, Srivastava M, Srivastava A, et al. Scientific Reports, 2022, 12, 5824.
23 Qin Z Y, Dong L P, Zhang G H, et al. Optical Materials, 2022, 131, 112640.
24 Yang Z P, Song Y C, Han Y, et al. Chinese Journal of Luminescence, 2012, 33(6), 586(in Chinese).
杨志平, 宋延春, 韩月, 等. 发光学报, 2012, 33(6), 586.
25 Wang P. Physical Experiment of College, 2015, 28(3), 80(in Chinese).
王鹏. 大学物理实验, 2015, 28(3), 80.
26 Qin Z X, Yuan X, Xiong B X, et al. Acta Photonica Sinica, 2014, 43(6), 58(in Chinese).
秦忠雪, 袁孝, 熊宝星, 等. 光子学报, 2014, 43(6), 58.
27 He E J, Zheng H R, Gao D L, et al. Scientia Sinica(Physica, Mecha-nica & Astronomica), 2010, 40(1), 60(in Chinese).
何恩节, 郑海荣, 高当丽, 等. 中国科学:物理学·力学·天文学, 2010, 40(1), 60.
28 Jiang H X, Lyu S C. Acta Physica Sinica, 2021, 70(17), 254(in Chinese).
姜洪喜, 吕树臣. 物理学报, 2021, 70(17), 254.
29 Hairegu T, Tushagu A, Meiheriguli M, et al. Journal of Synthetic Crystals, 2017, 46(9), 1697(in Chinese).
海热古·吐逊, 吐沙姑·阿不都吾甫, 美合日古丽·麦麦提, 等. 人工晶体学报, 2017, 46(9), 1697.
30 Zhang X, Cui R R, Zhang J, et al. Optik, 2021, 245, 167646.
31 Dexter D L, Schulman J H. Journal of Chemical Physics, 1954, 22(6), 1063.
32 Jia Y T, Xu D H, Wei C, et al. Applied Physics A-Materials Science & Processing, 2019, 125(8), 1.
33 Chen C T, Lin T J, Molokeev M S, et al. Dyes and Pigments, 2018, 150, 121.
34 Zheng J L, Wu X L, Ren Q, et al. Optics and Laser Technology, 2020, 122, 105857.
[1] 张弛, 党乾, 刘国怀, 王昭东. 稀土钇的开发及应用[J]. 材料导报, 2023, 37(3): 22120049-8.
[2] 徐雪珠, 蒙紫薇, 周国富. 纳米纤维素的光电子性能及器件应用综述[J]. 材料导报, 2023, 37(2): 21010134-14.
[3] 卢学峰, 王宽, 崔志红. 掺杂(硅、锗、锡)单壁碳纳米管的第一性原理研究[J]. 材料导报, 2022, 36(9): 20120188-5.
[4] 刘子甄, 金欣, 王闻宇, 牛家嵘. 基于分子结构设计的高性能聚酰亚胺的研究进展[J]. 材料导报, 2021, 35(z2): 600-611.
[5] 欧黎明, 毛丰, 乔永枫, 高梦锞, 吴修德, 魏世忠. 稀土元素Eu和冷却速率对Al-7Si合金中共晶硅的影响[J]. 材料导报, 2021, 35(8): 8103-8107.
[6] 王瑞, 赵宣, 赵丽娟, 闫静, 田晓, 姚占全. 微量稀土元素掺杂引起Fe-Ga合金大磁致伸缩性能的研究进展[J]. 材料导报, 2020, 34(7): 7146-7153.
[7] 李萧, 胡水平, 韩天棋. Nd、Y对AZ31镁合金热轧退火薄板耐蚀性的影响[J]. 材料导报, 2020, 34(10): 10088-10092.
[8] 林青, 李玲玲, 陈文远, 张爽, 王威, 张小娟, 郝凌云. 通过改进前驱体制备具有特异光学性能的油烟墨[J]. 材料导报, 2019, 33(Z2): 61-64.
[9] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[10] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[11] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[12] 尚根峰, 黄嘉鹏, 汪航. Y,La改性Ni-10Cr-5Al合金的循环氧化行为研究[J]. 《材料导报》期刊社, 2018, 32(4): 584-588.
[13] 张烁, 宋江凤, 潘复生, 刘强, 杨丽. 微量硼添加对镁合金组织和性能影响的研究进展[J]. 材料导报, 2018, 32(19): 3405-3413.
[14] 张赛楠, 潘利文, 罗涛, 黄丹琳, 董强, 胡治流. 稀土La和Ce及超声处理对ZL201铝合金显微组织及抗拉强度的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2452-2457.
[15] 李小强, 马国俊, 殷俊, 刘文宁. 稀土元素对镁合金力学行为影响的研究现状*[J]. 《材料导报》期刊社, 2017, 31(21): 82-89.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed