Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040211-5    https://doi.org/10.11896/cldb.22040211
  金属与金属基复合材料 |
FeCrAl合金管TIG焊焊接接头的组织及性能
曹睿1,*, 王恒霖1, 秦巍2, 刘少尊2, 周双双2, 刘一波2, 王铁军2, 闫英杰1
1 兰州理工大学材料科学与工程学院,有色金属先进加工与再利用省部共建国家重点实验室,兰州 730050
2 中国钢研科技集团有限公司,安泰科技股份有限公司,北京 100081
Microstructure and Property of TIG Welded Joint of FeCrAl Alloy Tube
CAO Rui1,*, WANG Henglin1, QIN Wei2, LIU Shaozun2, ZHOU Shuangshuang2, LIU Yibo2, WANG Tiejun2, YAN Yingjie1
1 The State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 Advanced Technology & Materials Co., Ltd., China Iron & Steel Research Technology Co., Ltd., Beijing 100081, China
下载:  全 文 ( PDF ) ( 20170KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用TIG(Tungsten inert gas welding,TIG)焊对FeCrAl合金管同质材料进行焊接,通过扫描电子显微镜、透射电子显微镜及能谱仪等手段研究了焊后接头的显微组织特征、焊后接头不同区域氧化物颗粒的分布情况及焊接接头的力学性能。FeCrAl合金TIG焊通过填充等成分的FeCrAl合金丝材进行焊接,焊后焊接接头主要由焊缝区、热影响区及母材组成。其中焊缝区为粗大的铁素体组织,热影响区为细小的等轴晶组织。焊缝区的Y2O3氧化物颗粒发生了明显粗化并与基体反应生成复合氧化物Y3Al5O12。TIG焊焊接FeCrAl合金管热处理后,焊接接头最大抗拉强度值为530 MPa,约为母材强度的80.8%,可以实现大口径、大壁厚的FeCrAl合金管材的对接接头的力学性能要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹睿
王恒霖
秦巍
刘少尊
周双双
刘一波
王铁军
闫英杰
关键词:  FeCrAl合金  TIG焊接  氧化物颗粒  拉伸性能    
Abstract: The homogenous materials of FeCrAl alloy tube were welded by TIG welding. By scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy, the microstructure characteristics of the welded joint, the distribution of oxide particles in different areas of the welded joint and the mechanical properties of the welded joint were investigated. TIG welding of FeCrAl alloy was carried out by filling FeCrAl alloy wire. The welding joint was mainly composed of weld zone, heat affected zone and base metal. The weld metal zone is composed of coarse ferrite microstructure. The heat affected zone is composed of fine equiaxed crystal microstructure. The oxide particles are obviously coarsened in the weld metal zone. A certain number of oxide particles can still be guaranteed in the weld metal zone. Oxide particles grow up from the original nano oxide particles into sub-micron oxide particles duringthe welding process. Moreover, Y2O3 oxide particles decompose and react with matrix to form composite oxide Y3Al5O12. The maximum tensile strength of TIG welded FeCrAl alloy tube reaches 530 MPa, which is about 80.8% of the strength of base material. The mechanical properties of butt joints of FeCrAl alloy tube with large diameter and large wall thickness can be achieved.
Key words:  FeCrAl alloy    TIG welding    oxide particle    tensile property
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG442  
基金资助: 国家自然科学基金(52175325;51961024;52071170)
通讯作者:  *曹睿,兰州理工大学,博士、教授、博士研究生导师,甘肃省飞天学者和四川省天府学者特聘教授。2003年6月于兰州理工大学材料科学与工程学院参加工作至今。主要从事新材料、异种材料的焊接性、强韧性、腐蚀、变形、损伤及断裂行为研究等科研工作。发表SCI检索论文90余篇,发表中文核心期刊论文120余篇。完成著作2部Micromechanism of Cleavage Fracture of Metals、《金属解理断裂微观机理》。完成国家自然科学基金项目、甘肃省科研项目以及企业合作项目40余项。caorui@lut.edu.cn   
引用本文:    
曹睿, 王恒霖, 秦巍, 刘少尊, 周双双, 刘一波, 王铁军, 闫英杰. FeCrAl合金管TIG焊焊接接头的组织及性能[J]. 材料导报, 2024, 38(2): 22040211-5.
CAO Rui, WANG Henglin, QIN Wei, LIU Shaozun, ZHOU Shuangshuang, LIU Yibo, WANG Tiejun, YAN Yingjie. Microstructure and Property of TIG Welded Joint of FeCrAl Alloy Tube. Materials Reports, 2024, 38(2): 22040211-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040211  或          http://www.mater-rep.com/CN/Y2024/V38/I2/22040211
1 Gussev M N, Field K G, Yamamoto Y. Materials & Design, 2017, 129, 227.
2 Olivier Doyen, Brendan Le Gloannec, Alexis Deschamps, et al. Journal of Nuclear Materials, 2019, 518, 326.
3 Cao R, Wang H L, Che H Y, et al. Welding & Joining, 2021, 1(10), 1(in Chinese).
曹睿, 王恒霖, 车洪艳, 等. 焊接, 2021, 1(10), 1.
4 Liang Shenyong, Lei Yucheng, Zhu Qiang, et al. Journal of Nuclear Materials, 2015, 456, 206.
5 Gussev M N, Cakmak E, Field K G, et al. Journal of Nuclear Materials, 2018, 504, 221.
6 Anumat Sittiho, Vedavyas Tungala, Indrajit Charit, et al. Journal of Nuclear Materials, 2018, 509, 435.
7 Jerred N D, Charit T, Zirker L R, et al. Journal of Nuclear Materials, 2018, 508, 265.
8 Rebak R B.Accident-tolerant materials for light water reactor fuels(1st Ed), Cambridge, USA, Elsevier, 2020.
9 Wu Y, Haney E M, Cunningham N J, et al. Acta Materialia, 2012, 60(1), 3456.
10 Lei Y C, Li M G, Cheng L. Chinese Journal of Material Research, 2012, 26(4), 383 (in Chinese).
雷玉成, 李猛刚, 承龙. 材料研究学报, 2012, 26(4), 383.
11 Lei Y C, Gong C C, Luo Y, et al. Chinese Journal of Material Research, 2014, 28(2), 93 (in Chinese).
雷玉成, 龚晨诚, 罗雅, 等. 材料研究学报, 2014, 28(2), 93.
12 Lei Y C, Ren W J, Xie W F, et al. Transactions of the China Welding Institution, 2011, 32(11), 1(in Chinese).
雷玉成, 任闻杰, 谢伟峰, 等. 焊接学报, 2011, 32(11), 1.
13 Liang S Y, Lei Y C, Zhao K, et al. Materials Science & Technology, 2013, 21(5), 20(in Chinese).
梁申勇, 雷玉成, 赵凯, 等. 材料科学与工艺, 2013, 21(5), 20.
14 Zhua Qiang, Lei Yucheng, Wang Yunlong, et al. Fusion Engineering and Design, 2014 89, 2964.
15 Cui Z Q, Tan Y C. Metallography and heat treatment, Machine Press, China, 2016, pp. 29(in Chinese).
崔忠圻, 覃耀春. 金属学与热处理, 机械工业出版社, 2016, pp. 29.
[1] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[2] 张焯栋, 赵君文, 范军, 张海成, 高杰维, 韩瑞鹏. 缺口对7A85铝合金拉伸性能和疲劳性能的影响[J]. 材料导报, 2023, 37(24): 22080021-7.
[3] 王恒霖, 曹睿, 程虹蓓, 秦巍, 周双双, 闫英杰. FeCrAl合金板材TIG焊焊接接头的显微组织及性能[J]. 材料导报, 2023, 37(24): 22080047-7.
[4] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[5] 邹田春, 符记, 巨乐章, 李晔. 铺层方式对CFRP-铝合金单搭接胶接接头低速冲击损伤及剩余拉伸性能的影响[J]. 材料导报, 2023, 37(11): 21070166-7.
[6] 刘鹏, 马吉恩, 方攸同, 李刚. 多次补焊对304不锈钢焊接接头性能的影响[J]. 材料导报, 2022, 36(Z1): 21120176-5.
[7] 曾广凯, 崔君阁, 王雨辰, 陈凯伦, 潘森鑫, 潘利文, 胡治流. Al3Ti/Al-Si-Cu-V-Zr合金复合材料显微组织及拉伸性能[J]. 材料导报, 2022, 36(8): 21020142-5.
[8] 马良义, 台鹏飞, 王志光, 庞立龙, 申铁龙, 姚存峰, 李靖. FeCrAl合金的液态LBE/Pb腐蚀研究进展[J]. 材料导报, 2022, 36(7): 20100178-6.
[9] 李亮, 栾贻恒, 吴俊, 杜修力, 吴文杰. 钢网片-聚乙烯纤维增强水泥基复合材料中低速动态拉伸性能试验研究[J]. 材料导报, 2022, 36(5): 20120031-6.
[10] 李阳, 蔡长春, 余欢, 徐志锋, 王振军, 张永刚, 钱鑫, 钟俊俊. 国产M50J级碳纤维/铝基复合材料的微观特征及拉伸性能研究[J]. 材料导报, 2022, 36(21): 21030323-6.
[11] 武多多, 郑会龙, 康振亚, 习常清, 张谭. 基于金属骨架的复合材料混合结构拉伸性能与失效机理分析[J]. 材料导报, 2022, 36(20): 21050214-7.
[12] 卢博, 李安敏, 饶宇, 汪林忠, 左天辰, 胡杨. 稀土Y及热处理对6016铝合金组织与性能的影响[J]. 材料导报, 2022, 36(19): 21070110-8.
[13] 于娟, 李国爱, 冯朝辉, 陈军洲, 赵唯一. 中间形变热处理对铝锂合金短横向拉伸性能的影响[J]. 材料导报, 2022, 36(18): 20060118-5.
[14] 陈永庆, 闫英杰, 曹睿, 刘刚, 秦巍, 车洪艳, 王铁军. 原始粉末颗粒边界对FeCrAl合金冲击韧性的影响机理[J]. 材料导报, 2021, 35(6): 6131-6134.
[15] 朱奕瑶, 冯俊强, 张增耀, 杨哲宁, 张向鹏, 王红霞. 形变热处理对Mg-4Al-1Si-1Gd合金组织及性能的影响[J]. 材料导报, 2021, 35(20): 20149-20154.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed