Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22100019-7    https://doi.org/10.11896/cldb.22100019
  无机非金属及其复合材料 |
油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究
杨长兴1, 王固霞1,2,3,*, 郭生伟4
1 北方民族大学化学与化学工程学院,银川 750021
2 宁夏太阳能化学转化技术重点实验室,银川 750021
3 化工技术基础国家民委重点实验室,银川 750021
4 北方民族大学材料科学与工程学院,银川 750021
Preparation, Characterization and Tribological Properties of Oleic Acid Modified Graphitic Phase Carbon Nitride
YANG Changxing1, WANG Guxia1,2,3,*, GUO Shengwei4
1 School of Chemistry & Chemical Engineering, North Minzu University, Yinchuan 750021, China
2 Ningxia Key Laboratory of Solar Chemical Conversion Technology, Yinchuan 750021, China
3 Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Yinchuan 750021, China
4 School of Materials Science & Engineering, North Minzu University, Yinchuan 750021, China
下载:  全 文 ( PDF ) ( 13219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相氮化碳(g-C3N4)具有高比表面积、超低的层间剪切强度以及表面化学稳定性,在润滑领域具有巨大的应用潜力。本工作采用冷凝回流法制备了油酸表面改性石墨相氮化碳(g-C3N4/OA)纳米片,并利用FTIR、XRD、SEM、AFM、TGA、BET等手段对其结构、形貌进行表征,利用四球法考察了含有g-C3N4/OA的150BS再生基础油的摩擦学性能。结果表明,0.03%(质量分数,下同) g-C3N4/OA作为润滑油添加剂,可使基础油平均摩擦系数(AFC)和平均磨斑直径(AWSD)最低,与纯150BS再生基础油相比,分别降低了27.7%和9.2%。机理分析表明,在摩擦过程中层状结构诱导的自润滑展现出良好的润滑性能,在摩擦接触界面形成含有铁、氧、氮和碳元素的自修复油膜有效提高了基础油的减摩、抗磨性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨长兴
王固霞
郭生伟
关键词:  g-C3N4纳米片  再生基础油  表面改性  摩擦学性能    
Abstract: Graphite phase carbon nitride (g-C3N4) has great potential application in the lubrication field due to its high specific surface area, ultra-low interlaminar shear strength and surface chemical stability. In this work, oleic acid modified graphite phase carbon nitride (g-C3N4/OA) nano sheets were prepared by condensation reflux method. FTIR, XRD, SEM, AFM, TGA, BET was employed to characterize the structure and morphology of g-C3N4/OA. And the tribological properties of 150BS regenerated base oil containing g-C3N4/OA were investigated by four ball method. The results show that the average friction coefficient (AFC) and average wear scar diameter (AWSD) can be minimized when 0.03wt% g-C3N4/OA as lubricating oil additive was used. Compared with the pure 150BS regenerated base oil, AFC and AWSD were reduced by 27.7% and 9.2%, respectively. The mechanism analysis shows that the self-lubrication induced by layered structure shows good lubrication performance during the friction process. The self-repairing oil film containing iron, oxygen, nitrogen and carbon elements is formed at the friction contact interface, which effectively improves the antifriction and anti-wear performance of the lubricating oil.
Key words:  g-C3N4 nanosheet    recycled base oil    surface modification    tribological property
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TQ646.2  
基金资助: 北方民族大学重点科研项目(2021KJCX03);宁夏回族自治区重点研发项目(2022BDE03003);北方民族大学引进人员科研启动项目(2020KYQD06)
通讯作者:  * 固霞,博士,硕士研究生导师。2018年毕业于合肥工业大学,获工学博士学位,2009年于北方民族大学化学与化学工程学院任教至今,主要研究方向为材料化学,在国内外学术期刊上发表论文20余篇,授权专利5项,出版专著1部。guxia511@163.com   
作者简介:  杨长兴,2020年5月毕业于天津理工大学,获工学学士学位。现为北方民族大学化学与化学工程学院硕士研究生,目前主要研究领域为润滑材料。
引用本文:    
杨长兴, 王固霞, 郭生伟. 油酸改性石墨相氮化碳的制备、表征及摩擦学性能研究[J]. 材料导报, 2023, 37(23): 22100019-7.
YANG Changxing, WANG Guxia, GUO Shengwei. Preparation, Characterization and Tribological Properties of Oleic Acid Modified Graphitic Phase Carbon Nitride. Materials Reports, 2023, 37(23): 22100019-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100019  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22100019
1 Holmberg K, Andersson P, Nylund N O, et al. Tribology International, 2014, 78, 94.
2 Akbulut M, Belman N, Golan Y, et al. Advanced Materials, 2006, 18(19), 2589.
3 Novak C, Kingman D, Stern K, et al. Tribology Transactions, 2014, 57(5), 831.
4 Carpick R W, Jackson A, Sawyer W G, et al. Tribology & Lubrication Technology, 2016, 72(5), 44.
5 Mate C M, Carpick R W. Tribology on the small scale: a modern textbook on friction, lubrication, and wear, Oxford University Press, USA, 2019.
6 Matsumura K, Chiashi S, Maruyama S, et al. Applied Surface Science, 2018, 432, 190.
7 Li X, Qi P, Liu Q, et al. Wear, 2021, 484, 203852.
8 Wang J, Guo X, He Y, et al. RSC Advances, 2017, 7(64), 40249.
9 Padgurskas J, Rukuiza R, Prosyčevas I, et al. Tribology International, 2013, 60, 224.
10 Chou R, Battez A H, Cabello J J, et al. Tribology International, 2010, 43(12), 2327.
11 Luo T, Wei X, Huang X, et al. Ceramics International, 2014, 40(5), 7143.
12 Wu L, Zhang Y, Yang G, et al. RSC Advances, 2016, 6(74), 69836.
13 Du S, Sun J, Wu P. Carbon, 2018, 140, 338.
14 Spear J C, Ewers B W, Batteas J D. Nano Today, 2015, 10(3), 301.
15 Yu H L, Xu Y, Shi P J, et al. Surface and Coatings Technology, 2008, 203(1-2), 28.
16 Wang J, Zhang H, Hu W, et al. Nanomaterials, 2022, 12(13), 2287.
17 Zhang Y, Jin Z, Su Y, et al. Molecular Catalysis, 2019, 462, 46.
18 Flores-Ruiz F J, Enriquez-Flores C I, Chiñas-Castillo F, et al. Applied surface science, 2014, 314, 193.
19 Kumar A, Thakre G D, Arya P K, et al. Macromolecular Symposia, 2017, 376(1),1700009.
20 Chen B, Zhang M, Zhang K, et al. Friction, 2022, 10(5), 717.
21 Zhu L, You L, Shi Z, et al. Journal of Applied Polymer Science, 2017, 134(41), 45403.
22 Uflyand I E, Zhinzhilo V A, Burlakova V E. Friction, 2019, 7(2), 93.
23 She X, Wu J, Zhong J, et al. Nano Energy, 2016, 27, 138.
24 Wu W, Liu J, Li Z, et al. Chemical Engineering Journal, 2021, 410, 128306.
25 Michelsen H A, Schulz C, Smallwood G J, et al. Progress in Energy and Combustion Science, 2015, 51, 2.
26 Kumari S, Chouhan A, Sharma O P, et al. ACS Applied Materials & Interfaces, 2021, 14(1), 1334.
27 Xiao H, Liu S. Materials & Design, 2017, 135, 319.
28 Xiong S, Liang D, Wu H, et al. Applied Surface Science, 2021, 539, 148090.
29 Wang K, Wu H, Wang H, et al. Applied Surface Science, 2020, 530, 147203.
[1] 郑洋, 张璇, 卢佳, 何东磊, 宿振宇, 牛伟, 于镇洋, 孙荣禄, 李岩. 医用镁合金体内降解行为与表面改性研究进展[J]. 材料导报, 2023, 37(19): 22020134-16.
[2] 王整, 蔡召兵, 陈飞寰, 董颖辉, 张坡, 陈娟, 古乐, 曾良才. 环境和法向载荷对(TiVCrAlMo)N高熵合金薄膜摩擦学性能的影响[J]. 材料导报, 2023, 37(18): 22050049-7.
[3] 郭远来, 缪婉, 钱继东, 熊开琴, 涂秋芬. “一步法”构建基于Zn2+的抗菌表面[J]. 材料导报, 2023, 37(12): 22030058-6.
[4] 易荣, 王法衡, 刘永财, 李涤尘, 刘亚雄. 聚醚醚酮的表面改性策略综述[J]. 材料导报, 2023, 37(11): 21070057-12.
[5] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[6] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[7] 熊光耀, 李圣鑫, 李波, 沈明学. 面向低温环境的聚合物摩擦学性能及其改性研究进展[J]. 材料导报, 2022, 36(3): 20070001-6.
[8] 梁朝, 李茹春, 李春全, 孙志明, 陈珍明, 郑水林. 硅酸钙表面有机改性和形貌对填充PP复合材料力学性能的影响及机理[J]. 材料导报, 2022, 36(23): 21080298-8.
[9] 霍丽霞, 苟世宁, 郭芳君, 贺颖, 冯凯, 周晖, 张凯锋. 溶胶-凝胶法制备聚酰胺-酰亚胺粘结MoS2/SiOx固体润滑涂层及其真空摩擦学性能研究[J]. 材料导报, 2022, 36(22): 22050078-5.
[10] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[11] 郑皓华, 邓雅洁, 吴志林. 纳米包装材料表面改性技术及包装形态表现研究[J]. 材料导报, 2022, 36(19): 21110079-5.
[12] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[13] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[14] 刘莹, 杨俊杰, 易艳良, 张治国, 王小健, 李卫, 周圣丰. 抗菌不锈钢的抗菌原理、常规加工与增材制造[J]. 材料导报, 2021, 35(23): 23097-23105.
[15] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed