Please wait a minute...
材料导报  2023, Vol. 37 Issue (14): 22010094-6    https://doi.org/10.11896/cldb.22010094
  高分子与聚合物基复合材料 |
全生物质α-甲壳素纳米纤维柔性透明膜的制备及性能研究
吴启静, 马洁茹, 刘硕, 王露臻, 周彤, 李大纲, 陈楚楚*
南京林业大学材料科学与工程学院,南京 210037
Preparation and Properties of Flexible, Transparent, All-biomass α-Chitin Nanofiber Films
WU Qijing, MA Jieru, LIU Shuo, WANG Luzhen, ZHOU Tong, LI Dagang, CHEN Chuchu*
School of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
下载:  全 文 ( PDF ) ( 20899KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在自然界中,甲壳素一般以有序的结晶纳米纤维形式存在,赋予了生物体优异的力学性能。本研究分别采用“常温温和”(常温,Mild condition)和“高温加热”(高温,High temperature condition)两种方法从废弃蟹壳中提取α-甲壳素并制得常温α-甲壳素纳米纤维膜(常温膜)和高温α-甲壳素纳米纤维膜(高温膜),分别对所得两种α-甲壳素纳米纤维样品从微观结构、力学性能、结晶构造、表面特性以及光学性能等方面进行表征,分析对比两种不同提取方法对甲壳素纤维结构及性能的影响,并进一步探究提取制备过程中甲壳素的纤维形态及均匀性对其薄膜力学性能、光学透明性的影响。
结果表明,与“高温”提取条件相比,经“常温”条件提取所得α-甲壳素纳米纤维具有较高的长径比且尺寸分布均匀,较好地保留了甲壳素原有的天然结构。其中,常温膜的拉伸强度可达(152±2.56) MPa,断裂伸长率约为10.0%,是高温膜的2.50倍左右,具有较好的柔韧性。同时,常温膜还具备优异的光学及热稳定性能,透光率高达91.0%,雾度低至3.19%,在200 ℃高温条件下仍能保持性状稳定。综上,“常温”条件下提取的甲壳素纳米纤维由于较好地保留了其天然结构优势,使得制备所得膜材料具备优异的力学强度及透光性等。本工作的研究成果为制备全生物质高强度、低雾度柔性透明膜材料提供了理论依据和技术支持,有望作为柔性透明基材应用于柔性电子元件、电子皮肤、智能标签及柔性传感等研究领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴启静
马洁茹
刘硕
王露臻
周彤
李大纲
陈楚楚
关键词:  甲壳素纳米纤维  温和条件  高透明度  低雾度  高强度    
Abstract: In nature, chitin generally exists in the form of ordered crystalline nanocrystalline fibers, which gives organisms excellent mechanical properties. In this study, chitin was extracted from discarded crab shells by two methods of ‘mild condition’ and ‘high temperature condition’, respectively. Then the room temperature α-chitin nanofiber films (mild condition film) and the high temperature α-chitin nanofiber films (high temperature condition film) were prepared by vacuum filtration through mechanical grinding and other processing methods. To further discuss the influence of the nanofiber morphology and uniformity on the film mechanics, optical transparency, the microstructural morphology, mechanical tensile properties, crystal structure, surface characteristics, optical properties and thermal performance of the prepared chitin nanofiber films were characterized.
The results show that, compared with the extraction of ‘high temperature condition’, the α-chitin nanofibers extracted under the ‘mild condition’ have higher aspect ratio and uniform size distribution, and retain the excellent original natural structure of chitin. Among them, the mild condition films have good flexibility, whose tensile strength can reach (152±2.56) MPa, and the elongation at break is nearly 10.0%, which is about 2.50 times than that of the high temperature condition films. At the same time, the mild condition films also have excellent optical and thermal stability, with the light transmittance as high as 91.0% and the haze as low as 3.19%, and it can still maintain stable properties at 200 ℃. Thus, chitin nanofiber extracted under the “mild condition” retains its natural structural advantages, which contribute to the film excellent mechanical strength and light transmittance. The research results in this work provide theoretical basis and technical support for the preparation of all-biomass flexible transparent film materials with high strength and low haze, and are expected to be used as flexible transparent substrates in the research fields of flexible electronics components, electronic skin, smart tags and flexible sensors, etc.
Key words:  chitin nanofibers    mild condition    high transparency    low haze    high strength
出版日期:  2023-07-25      发布日期:  2023-07-24
ZTFLH:  TB324  
基金资助: 国家自然科学基金(31901254);江苏省农业科技自主创新资金项目(CX(22)3170);江苏省研究生科研与实践创新计划项目(SJCX21_0332);第14批中国博士后科学基金(2021T140329);中国博士后科学基金资助项目(2020M671506)
通讯作者:  *陈楚楚,南京林业大学材料科学与工程学院副教授、硕士研究生导师,江苏省333高层次人才。目前主要研究方向为生物质基仿生结构功能型复合材料及其在柔性电子、组织工程及智能防伪、新型可降解包装等研究领域的应用。近年来,在Advanced Materials、Small、Chemical Engineering Journal等期刊共发表论文50余篇,获授权国家发明专利12项。chuchu_chen@njfu.edu.cn   
作者简介:  吴启静,2019年9月至2022年6月在南京林业大学材料科学与工程学院攻读硕士学位。在陈楚楚副教授的指导下进行研究,目前主要研究领域为生物质包装材料。
引用本文:    
吴启静, 马洁茹, 刘硕, 王露臻, 周彤, 李大纲, 陈楚楚. 全生物质α-甲壳素纳米纤维柔性透明膜的制备及性能研究[J]. 材料导报, 2023, 37(14): 22010094-6.
WU Qijing, MA Jieru, LIU Shuo, WANG Luzhen, ZHOU Tong, LI Dagang, CHEN Chuchu. Preparation and Properties of Flexible, Transparent, All-biomass α-Chitin Nanofiber Films. Materials Reports, 2023, 37(14): 22010094-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010094  或          http://www.mater-rep.com/CN/Y2023/V37/I14/22010094
1 Guo H. The International Journal of Electrical Engineering and Education, 2021, 0020720921996593.
2 Wang D, Hauptmann J, May C, et al. Flexible and Printed Electronics, 2021, 6(3), 035001.
3 Lee S, Kim H, Kim Y. InfoMat, 2021, 3(1), 61.
4 Yi C, Li W, Shi S, et al. Solar Energy, 2020, 195, 340.
5 Yang Z, Kang C, Guo H, et al. Acta Polymerica Sinica, 2021, 52(10), 1308.
6 Abe A, Nakano T, Yamashita W, et al. ChemPhysChem, 2011, 12(7), 1367.
7 Chen L, Yu H, Dirican M, et al. Advanced Materials Interfaces, 2020, 7(20), 2000928.
8 Khajavian M, Vatanpour V, Castro-Muñoz R, et al. Carbohydrate Polymers, 2022, 275, 118702.
9 Shamshins J L, Berton P, Rogers R D. ACS Sustainable Chemistry and Engineering, 2019, 7 (7), 6444.
10 Ifuku S, Saimoto H. Nanoscale, 2012, 4(11), 3308.
11 Tsurkan M V, Voronkina A, Khrunyk Y, et al. Carbohydrate Polymers, 2021, 252, 117204.
12 Shams M I, Ifuku S, Nogi M, et al. Applied Physics A, 2011, 102(2), 325.
13 Ifuku S, Morooka S, Nakagaito A N, et al. Green Chemistry, 2011, 13(7), 1708.
14 Mushi N E. International Journal of Biological Macromolecules, 2021, 178, 591.
15 Chen C C, Li D G, Hu Q Q, et al. Materials and Design (1980-2015), 2014, 56, 1049.
16 Abe K, Ifuku S, Nogi M. Biomacromolecules, 2009, 10(6), 1584.
17 Iftekhar S M, Nogi M, Berglund L A, et al. Soft Matter, 2012, 8(5), 1369.
18 Jang M K, Kong B G, Jeong Y I, et al. Journal of Polymer Science Part A:Polymer Chemistry, 2004, 42(14), 3423.
19 Minke R A M, Blackwell J. Journal of Molecular Biology, 1978, 120(2), 167.
20 Segal L, Creely J J, Martin Jr A E, et al. Textile Research Journal, 1959, 29(10), 786.
21 Aida T M, Oshima K, Abe C, et al. Carbohydrate Polymers, 2014, 106, 172.
22 Klapiszewski L, Wysokowski M, Majchrzak l, et al. Journal of Nanomaterials, 2013, 2013, 1.
23 Ruihua L, Zhong M. Materials Research Express, 2021, 8(2), 025801.
24 Jiao X, Zhang C, Yuan Z. ACS Applied Materials and Interfaces, 2018, 10(48), 41299.
[1] 何国宁, 蒋波, 何博, 胡学文, 刘雅政. 集装箱用高强度耐候钢的开发及研究现状[J]. 材料导报, 2022, 36(4): 20090318-9.
[2] 陈刚, 姚远超, 贾寓真, 苏斌, 刘国跃, 曾斌. 30Cr4MoNiV超高强度钢热变形本构方程的构建与优化[J]. 材料导报, 2022, 36(21): 21010158-7.
[3] 柴锋, 王泽民, 罗小兵, 张正延, 刘敏, 王占勇. Ni对高强度低合金钢中富Cu相析出特征的影响[J]. 材料导报, 2022, 36(11): 21070210-5.
[4] 鲍键, 李全安, 陈晓亚, 张迁, 陈籽佚. 挤压镁合金的研究进展[J]. 材料导报, 2022, 36(10): 20090073-12.
[5] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[6] 朱诚意, 鲍远凯, 汪勇, 马江华, 李光强. 新能源汽车驱动电机用无取向硅钢应用现状和性能调控研究进展[J]. 材料导报, 2021, 35(23): 23089-23096.
[7] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[8] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[9] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[10] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[11] 李学锋, 王慧, 龙世军, 黄以万, 李海燕. 离子双交联海藻酸钠/聚(丙烯酰胺-co-丙烯酸)高强度水凝胶的研究[J]. 材料导报, 2020, 34(16): 16149-16154.
[12] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[13] 佟莹, 高林, 张开开, 权国政, 王玄, 周杰. 超高强度钢板的梯度控温相变强化模式[J]. 材料导报, 2019, 33(20): 3494-3501.
[14] 王静,刘红科,刘平生,李利. 高强度水凝胶纳米复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 67-75.
[15] 黄大建, 马宗红, 马晨阳, 王新伟. 甲壳素纳米纤维增强明胶/壳聚糖复合膜的制备及性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 21-24.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed