Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21070210-5    https://doi.org/10.11896/cldb.21070210
  金属与金属基复合材料 |
Ni对高强度低合金钢中富Cu相析出特征的影响
柴锋1, 王泽民2, 罗小兵1, 张正延1, 刘敏2, 王占勇2
1 钢铁研究总院有限公司工程用钢研究院, 北京 100081
2 上海应用技术大学材料科学与工程学院,上海 201418
Effect of Ni on the Features of Cu-rich Precipitates in High-strength Low Alloy Steel
CHAI Feng1, WANG Zemin2, LUO Xiaobin1, ZHANG Zhengyan1, LIU Min2, WANG Zhanyong2
1 Institute of Structural Steels,Central Iron & Steel Research Institute Co., Ltd., Beijing 100081, China
2 School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
下载:  全 文 ( PDF ) ( 7781KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将两种不同Ni含量高强度低合金钢(1.5 Ni和2.0 Ni,%,质量分数)900 ℃水淬后630 ℃时效处理2 h,利用金相显微镜(OM)、高分辨透射电镜(HRTEM)和原子探针层析技术(APT)对钢的微观组织、力学性能以及纳米相析出特征进行了深入研究。结果表明:2.0 Ni钢的强度和冲击吸收功(-60 ℃)均高于1.5 Ni钢。两种钢的金相组织无明显差异,组织均为板条贝氏体和粒状贝氏体混合组织。1.5 Ni钢中,富Cu相为孪晶fcc结构,多呈椭球状,等效半径和数量密度分别约为3.5 nm和1.5×1022 m-3;而2.0 Ni钢中,富Cu相为9R结构,多呈球状,等效半径和数量密度分别约为2.9 nm和2.9×1022 m-3。这是由于Ni含量的提高,导致富Cu相的临界形核功降低,形核位置增多;同时,Ni、Mn原子偏聚在富Cu相/基体界面,有效降低了富Cu相/基体的界面能,导致富Cu相较稳定,不易长大、熟化。因此,2.0 Ni钢中富Cu相尺寸相对细小,数量密度也相对较高,析出强化效果更明显。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柴锋
王泽民
罗小兵
张正延
刘敏
王占勇
关键词:  高强度低合金钢  Ni  富Cu相  原子探针层析技术  元素分布    
Abstract: In this work, the influence of Ni (wt%)contents on the microstructure, mechanical properties and Cu-rich precipitates (CRPs) of high-strength low alloy (HSLA) steels (1.5 Ni and 2.0 Ni), which were subjected to water quenching at 900 ℃ and aging process at 630 ℃ for 2 h, were studied by optical microscopy (OM), high-resolution electron microscopy (HRTEM) and atom probe tomography (APT). The results indicate that the strength and impact absorption energy (-60 ℃) of 2.0 Ni steel are higher than those of 1.5 Ni steel. The microstructure of two steels has no obvious change as Ni content increases, which is mainly constituted of lath and granular bainite. In 1.5 Ni steel, CRPs with twinned fcc structure are mostly ellipsoid, and the average radius and number density are around 3.5 nm and 1.5×1022 m-3, respectively. By comparison, in 2.0 Ni steel, CRPs with 9R structure are mostly spherical, and the average radius and number density are about 2.9 nm and 2.9×1022 m-3, respectively. With Ni content increasing, the critical nucleation energy of CRPs decreased and number density increased. Meanwhile, Ni and Mn atoms more likely segregate at the CRPs/matrix interfaces in 2.0 Ni steel, which can effectively decline the interfacial energy. Thus, CRPs is relatively stable and difficult to grow up and coarsen. As a result, the size of CRPs in 2.0 Ni steel was relatively small, but the number density was higher, corresponding to higher precipitation strengthening effects.
Key words:  high-strength low alloy steel    Ni    Cu-rich precipitates    atom probe tomography    element distribution
发布日期:  2022-06-09
ZTFLH:  TG142.71  
基金资助: 国家重点研发计划(2017YFB0304501);上海市扬帆计划 (19YF1446600)
通讯作者:  wzm@sit.edu.cn   
作者简介:  柴锋,钢铁研究总院正高级工程师,2008年毕业于上海交通大学材料学专业获博士学位,主要从事高性能船舶与海洋工程用钢研发工作,发表学术论文30余篇。
王泽民,高级实验师/博士,实验中心副主任,硕士研究生导师。2020年毕业于上海大学材料学专业,获工学博士学位。2010年进入上海应用技术大学工作,主要从事实验室教学与管理工作,研究方向为先进金属材料微观结构与性能研究。在Acta Materialia、Journal of Alloys and Compounds、Materials Science and Engineering A、Microscopy and Microanalysis、《金属学报》等国内外刊物发表论文20多篇,授权国家发明专利4项。现任中国体视学学会金相与显微分会理事、上海市有色金属学会铝基复合材料分会专家委员会成员,《理化检验-物理分册》杂志编委。
引用本文:    
柴锋, 王泽民, 罗小兵, 张正延, 刘敏, 王占勇. Ni对高强度低合金钢中富Cu相析出特征的影响[J]. 材料导报, 2022, 36(11): 21070210-5.
CHAI Feng, WANG Zemin, LUO Xiaobin, ZHANG Zhengyan, LIU Min, WANG Zhanyong. Effect of Ni on the Features of Cu-rich Precipitates in High-strength Low Alloy Steel. Materials Reports, 2022, 36(11): 21070210-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070210  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21070210
1 Jia S J, Liu Q Y, Li B.Transactions of Materials and Heat Treatment, 2016, 37(4), 129(in Chinese).
贾书君, 刘清友,李拔. 材料热处理学报, 2016, 37(4), 129.
2 Liu D S, Chen B G, Chen Y Y.Acta Metallurgica Sinica, 2012, 48(3), 334(in Chinese).
刘东升,陈丙贵, 陈圆圆. 金属学报, 2012, 48(3), 334.
3 Far A R H, Anijdam S H M, Abbasi S M.Materials Science and Engineering A, 2019, 746, 384.
4 Zhen H, Li Y, Li W, et al. Journal of Materials Science and Enginee-ring, 2019, 37(4),517.
5 Shen Q. Co-precipitation mechanisms research of Cu-rich and NiAl phases in steel. Ph.D. Thesis, Shanghai University,China, 2018(in Chinese).
沈琴. 钢中富Cu相和NiAl相复合析出机制的研究, 博士学位论文, 上海大学,2018.
6 Yu X H, Babu S S, Lippold J C, et al. Acta Materialia, 2010, 58(17), 5596.
7 Jiao Z B, Luan J H, Miller M K, et al. Scientific Reports, 2016, 6,21364.
8 Wang Z M, Li H, Shen Q, et al. Acta Materialia, 2018, 156, 158.
9 Goodman S R, Brenner S S, Low J R. Metallurgical Transactions, 1973, 4(10), 2363.
10 Goodman S R, Brenner S S, Low J R.Metallurgical Transactions, 1973, 4(10), 2371.
11 Gorbatov O I, Gornostyrev Y N, Korzhavyi P A, et al. Scripta Materialia, 2015, 102, 11.
12 Jiao Z B, Luan J H, Guo W, et al. Materials Research Letters, 2017, 5(8), 562.
13 Jiao Z B, Luan J H, Miller M K, et al. Materials Today,2017,20(3),142.
14 Chen G, Pan T, Li C T, et al. Heat Treatment of Metals, 2016, 463(3), 162(in Chinese).
陈刚, 潘涛, 李才巨, 等. 金属热处理, 2016,463(3), 162.
15 Luo X B, Yang C F, Chai F, et al. Heat Treatment of Metals, 2012, 37(9),71(in Chinese).
罗小兵, 杨才富, 柴锋, 等. 金属热处理, 2012,37(9), 71.
16 Mujahid M, Lis A K, Garcia C I, et al. Journal of Materials Engineering and Performance, 1998, 7(2), 247.
17 Sun M X, Zhang W N, Liu Z Y, et al. Materials Letters,2017,187,49.
18 Kapoor M, Isheim D, Vaynman S, et al. Acta Materialia, 2016, 104, 166.
19 Jain D, Isheim D, Hunter A H, et al. Metallurgical and Materials Tran-sactions A, 2016, 47(8), 3860.
20 Wang X J, Sha G, Shen Q, et al. Materials Science and Engineering A, 2015, 627, 340.
21 Wang Z M, Fang X L, Li H, et al. Microscopy and Microanalysis, 2017, 23(2),340.
22 Miller M K,Richard G. Atom-probe tomography: the local electrode atom probe, Springer, New York, 2014, pp.295.
23 Liu W Q, Zhu X Y, Zhong L M, et al. Acta Metallurgica Sinica, 2011, 47(8), 1094(in Chinese).
刘文庆, 朱骁勇, 钟柳明, 等. 金属学报, 2011,47(8), 1094.
24 Monzen R, Jenkins M L, Sutton A P.Philosophical Magazine A, 2000, 80(3), 711.
25 Habibi-Bajguirani H R, Jenkins M L. Philosophical Magazine Letters, 1996, 73(4), 155.
26 Othen P J, Jenkins M L, Smith G D W. Philosophical Magazine A, 1994, 70(1),1.
27 Liu Q D, Gu J F, Liu W Q.Metallurgical and Materials Transactions A, 2013, 44(10), 4434.
28 Liu Q D, Li C, Gu J F, et al. Philosophical Magazine, 2013, 94(3), 306.
[1] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[2] 郭建新, 周芸, 汪天尧, 闫敬明, 郭路, 左孝青. Al2O3/FeCrNi复合蜂窝载体材料的制备及性能[J]. 材料导报, 2022, 36(9): 20120112-6.
[3] 谷米, 孙荣禄, 牛伟, 郝文俊, 左润燕. 硼铁粉含量对激光熔覆AlCoCrFeNi高熵合金涂层性能及形貌的影响[J]. 材料导报, 2022, 36(8): 20120230-5.
[4] 宋婕, 常英珂, 吴瑞德, 李琳, 张程煜. 13Cr11Ni2W2MoV马氏体热强不锈钢的韧-脆转变及脆化机理[J]. 材料导报, 2022, 36(4): 20120015-5.
[5] 李亚敏, 张瑶瑶, 周生睿, 刘洪军. Al和Fe对Cr20Ni80电热合金性能影响的第一性原理研究[J]. 材料导报, 2022, 36(11): 20120148-6.
[6] 张浩源, 刘敬肖, 史非, 刘素花, 宋昕. Ptn-CsxWO3/PNIPAM热致调光材料的制备及其隔热性能研究[J]. 材料导报, 2022, 36(1): 20100129-5.
[7] 刘自刚, 周晓静, 朱婷婷, 陈亮, 陈飞, 许强. A-TIG焊接方法研究现状及展望[J]. 材料导报, 2021, 35(z2): 353-357.
[8] 孙毅, 徐业伟. 2,4-二硝基咪唑热分解机理的理论研究[J]. 材料导报, 2021, 35(z2): 535-539.
[9] 李文娟, 廖璇, 熊向源, 龚妍春, 李资玲. Pluronic修饰脂质体的研究进展[J]. 材料导报, 2021, 35(z2): 612-615.
[10] 李博帅, 鲁金涛, 朱明, 黄锦阳, 党莹樱, 谷月峰. 镍铁基高温合金摩擦焊接接头在煤灰/烟气中的腐蚀行为[J]. 材料导报, 2021, 35(Z1): 395-401.
[11] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[12] 卢祺, 黄锋, 郭逊. 合金化对Mg-Ni系合金储氢性能的影响:综述[J]. 材料导报, 2021, 35(9): 9033-9040.
[13] 焦齐统, 潘炜, 朱帅, 陈翔宇, 杨宁, 陈建, 顾晨宇, 邱天, 刘晶晶. 相组成对La0.75Mg0.25Ni3.5储氢合金电化学性能的影响[J]. 材料导报, 2021, 35(6): 6140-6145.
[14] 叶俊杰, 贺志荣, 张坤刚, 冯辉. 退火温度对Ti-50.8Ni-0.1Zr形状记忆合金丝记忆行为和力学性能的影响[J]. 材料导报, 2021, 35(4): 4118-4123.
[15] 韩志勇, 卢博文, 王仕成. Ni-Al-Pt粘结层的制备及微观组织演变分析[J]. 材料导报, 2021, 35(4): 4144-4149.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed