Please wait a minute...
材料导报  2023, Vol. 37 Issue (4): 21060010-8    https://doi.org/10.11896/cldb.21060010
  无机非金属及其复合材料 |
圆柱形光子晶体微波反应腔的加热效率和均匀性研究
王均委1,2, 李琳1,2, 齐家瑞1,2, 郑勤红1,2, 姚斌1,2,*
1 云南师范大学物理与电子信息学院,昆明 650500
2 云南省光电信息技术重点实验室,昆明 650500
Research on Heating Efficiency and Uniformity of Cylindrical Photonic Crystal Microwave Reaction Chamber
WANG Junwei1,2, LI Lin1,2, QI Jiarui1,2, ZHENG Qinhong1,2, YAO Bin1,2,*
1 School of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China
2 Key Laboratory of Photoelectric Information Technology of Yunnan Provincial, Kunming 650500, China
下载:  全 文 ( PDF ) ( 31183KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微波加热具有瞬时、可控、高效等优点,已被广泛应用于新材料制备、核工业、名贵药材干燥、化学反应催化、食品加热等方面。微波反应腔作为微波加热系统的关键设备,其更加合理的设计对提升微波加热的效率、均匀性、可控性都具有决定性意义。基于光子晶体对电磁波的布拉格散射特性,将微波波段的光子晶体引入到传统圆柱形微波反应腔中,设计了一款新型圆柱形光子晶体微波反应腔。在此基础上,仿真研究了光子晶体对加热效率和均匀性的影响规律。研究结果表明,相较传统圆柱形微波反应腔,圆柱形光子晶体微波反应腔具有更高的加热效率和均匀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王均委
李琳
齐家瑞
郑勤红
姚斌
关键词:  光子晶体  微波反应腔  加热效率  均匀性    
Abstract: Microwave heating has the advantages of instantaneous, controllable and high-efficiency, and it has been widely used in the preparation of novel materials, nuclear industry, drying of precious Chinese herb, chemical reaction catalysis, food heating, etc. The microwave reaction chamber is the key equipment of the microwave heating system. A more reasonable design of microwave reaction chamber has a decisive impact on the efficiency, uniformity, and controllability of microwave heating. Based on the Bragg scattering characteristics of photonic crystals to electromagnetic waves, in this work, we introduced the photonic crystals into the traditional cylindrical microwave reaction chamber and designed a novel cylindrical photonic crystal microwave reaction chamber. On this basis, simulation studies have been conducted on the influence of photonic crystals to heating efficiency and uniformity. The results show that, comparing with the traditional cylindrical microwave reaction chamber, the cylindrical photonic crystal microwave reaction chamber has higher heating efficiency and uniformity.
Key words:  photonic crystal    microwave reaction chamber    heating efficiency    uniformity
出版日期:  2023-02-25      发布日期:  2023-03-02
ZTFLH:  O44  
  TN815  
基金资助: 国家自然科学基金(61961044);云南省教育厅科学研究基金(2021J0433);云南师范大学研究生科研创新基金(YJSJJ21-B61)
通讯作者:  * 姚斌,云南师范大学副教授、硕士研究生导师。分别于2003年、2006年在云南师范大学获得应用物理学士学位和光学工程硕士学位,2012年在云南大学获得理论物理博士学位。从2006年至今,就职于云南师范大学物理与电子信息学院。目前主要从事电磁场数值计算及新型微波反应腔研发等微波技术相关研究。发表论文40余篇,授权专利6项,前后主持和参与国家自然科学基金项目4项。cn_yau@126.com   
作者简介:  王均委,2019年6月毕业于山东建筑大学,获得理学学士学位。现为云南师范大学物理与电子信息学院硕士研究生,在郑勤红教授和姚斌副教授的指导下进行研究。目前主要研究领域为微波能应用和新型微波反应腔。
引用本文:    
王均委, 李琳, 齐家瑞, 郑勤红, 姚斌. 圆柱形光子晶体微波反应腔的加热效率和均匀性研究[J]. 材料导报, 2023, 37(4): 21060010-8.
WANG Junwei, LI Lin, QI Jiarui, ZHENG Qinhong, YAO Bin. Research on Heating Efficiency and Uniformity of Cylindrical Photonic Crystal Microwave Reaction Chamber. Materials Reports, 2023, 37(4): 21060010-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060010  或          http://www.mater-rep.com/CN/Y2023/V37/I4/21060010
1 Adam D. Nature, 2003, 421, 571.
2 Stefanidis G D, Munoz A N, Sturm G, et al. Reviews in Chemical Engineering, 2014, 30(3), 233.
3 Liu C H, Zhang L B, Peng J H, et al. Transactions of Nonferrous Metals Society of China, 2013, 23(11), 3462.
4 El Khaled D, Novas N, Gazquez J A, et al. Renewable and Sustainable Energy Reviews, 2018, 82, 2880.
5 Zhang M, Chen B F, Li Y H, et al. Journal of Functional Materials, 2022, 53(11), 11081 (in Chinese).
张敏, 陈邦富, 李宇涵, 等. 功能材料, 2022, 53(11), 11081.
6 Zhou Q, Wang R Q, Lin B, et al. Journal of Chongqing University of Technology (Natural Science), 2021, 35(2), 130 (in Chinese).
周千, 王瑞琪, 林兵, 等. 重庆理工大学学报(自然科学), 2021, 35(2), 130.
7 Lou B W, Sha A, Barbieri D M, et al. Construction and Building Materials, 2021, 291, 123248.
8 Kumar A, Kuang Y, Liang Z, et al. Materials Today Nano, 2020, 11, 100076.
9 Dinani S T, Kubbutat P, Kulozik U. Innovative Food Science and Emerging Technologies, 2020, 63, 102376.
10 Nigar H, Sturm G S J, Garcia-Baños B, et al. Applied Thermal Engineering, 2019, 155, 226.
11 Zhou J, Yang X Q, Ye J H, et al. International Journal of Heat and Mass Transfer, 2019, 134, 271.
12 Chen F Y, Warning A D, Datta A K, et al. Journal of Food Engineering, 2017, 195, 191.
13 Wang J W, Li L, Yao B, et al. Journal of Yunnan Normal University(Natural Sciences Edition), 2021, 41(3), 44 (in Chinese).
王均委, 李琳, 姚斌, 等. 云南师范大学学报(自然科学版), 2021, 41(3), 44.
14 Jiao S S, Deng Y, Zhong Y, et al. Food Research International, 2015, 71, 41.
15 Yao B, Zheng Q H, Peng J H, et al. Materials Reports B:Research Papers, 2012, 26(4), 161 (in Chinese).
姚斌, 郑勤红, 彭金辉, 等. 材料导报:研究篇, 2012, 26(4), 161.
16 Bhattacharya M, Basak T, Sriram S. Chemical Engineering Science, 2014, 118, 257.
17 Soto-Reyes N, Temis-Pérez A L, López-Malo A, et al. Journal of Food Science, 2015, 80(5), E1021.
18 Zhong R N, Yao B, Xiang T, et al. Journal of Yunnan University (Natural Science Edition), 2017, 39(6), 981 (in Chinese).
钟汝能, 姚斌, 向泰, 等. 云南大学学报(自然科学版), 2017, 39(6), 981.
19 Zhu H C, He J B, Hong T, et al. Applied Thermal Engineering, 2018, 141, 648.
20 Ahn S H, Jeong C H, Lim D M, et al. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(7), 2867.
21 Fia A Z, Amorim J. Energy, 2021, 218, 119472.
22 Yi Q Y, Lan J Q, Ye J H, et al. Chemical Engineering Science, 2021, 231, 116339.
23 Rybin M V, Khanikaev A B, Inoue M, et al. Physical Review Letters, 2009, 103(2), 023901.
24 Markoš P, Kuzmiak V. Physical Review A, 2016, 94(3), 033845.
25 Markoš P. Optics Communications, 2016, 361, 65.
26 Yang R G, Zhang S C, Jin J M, et al. Advanced electromagnetic theory, Higher Education Press, China, 2008, pp.233 (in Chinese).
杨儒贵, 张世昌, 金建铭, 等. 高等电磁理论, 高等教育出版社, 2008, pp.233.
27 He J L, Yang Y, Zhu H C, et al. Applied Thermal Engineering, 2020, 178, 115594.
[1] 童瀚翔, 李红盛, 刘延领, 吴爱民, 黄昊. 红外隐身[Si/MgF2]N一维光子晶体设计与计算[J]. 材料导报, 2022, 36(Z1): 21060196-5.
[2] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[3] 赵亚丽, 贾琨, 赵岩, 马玉峰, 李旭峰. 金属光子晶体结构对其透光率强度和曲线宽度的影响[J]. 材料导报, 2021, 35(14): 14171-14175.
[4] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[5] 吕瑞阳, 宋凯, 董世运, 门平, 康学良, 闫世兴, 刘晓亭. 24CrNi合金钢力学性能重构磁滞参量定量评价[J]. 材料导报, 2020, 34(14): 14168-14174.
[6] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[7] 王月敏, 商磊, 闫相桥, 李新刚, 李垚. 基于纳米压痕技术的光子晶体薄膜实验研究与有限元模拟[J]. 材料导报, 2019, 33(14): 2283-2286.
[8] 陈可, 马会茹. pH响应性光子晶体[J]. 《材料导报》期刊社, 2018, 32(7): 1094-1099.
[9] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[10] 席小鹏, 王快社, 王文, 彭湃, 乔柯, 余良良. 搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望[J]. 材料导报, 2018, 32(21): 3814-3822.
[11] 张修超, 蔡晓兰, 周蕾, 乔颖博, 吴灿, 张爽, 朱伟. 高能球磨工艺对B4C/Al复合粉体结构演变及分布均匀性的影响[J]. 材料导报, 2018, 32(15): 2653-2658.
[12] 陈冬阳, 欧阳凌曦, 冯晓旭, 荣康, 杨杰, 王茺, 杨宇. 二维光子晶体微腔的制备及其对硅光学材料的光量子放大[J]. 《材料导报》期刊社, 2018, 32(13): 2189-2194.
[13] 孟佳意, 县泽宇, 李昕, 张德权. 光子晶体纤维的制备及应用*[J]. 《材料导报》期刊社, 2017, 31(5): 106-111.
[14] 徐 键,赵文娟,方 刚,徐清波. 反蛋白石结构光子晶体材料中光传输的仿真研究[J]. 《材料导报》期刊社, 2017, 31(24): 169-173.
[15] 杨楠楠, 沈鸿烈, 蒋晔, 金磊, 李金泽, 吴文文, 余双龙, 杨艳. 二氧化硅纳米球对硼酸源扩散形成p+硅层性能的影响*[J]. 《材料导报》期刊社, 2017, 31(12): 11-14.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed