Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 21110120-9    https://doi.org/10.11896/cldb.21110120
  低碳生态路面材料 |
泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证
周雯怡1, 易军艳1,*, 陈卓1,2, 冯德成1
1 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
2 广东省交通规划设计研究院股份有限公司,广州 510507
Interface Adhesion Enhancement Principle and Pavement Performance Verification of Foamed Asphalt Cold Recycled Mixture
ZHOU Wenyi1, YI Junyan1,*, CHEN Zhuo1,2, FENG Decheng1
1 School of Transportation Science & Engineering, Harbin Institute of Technology, Harbin 150090, China
2 Guangdong Provincial Planning and Design Institute Company Limited, Guangzhou 510507, China
下载:  全 文 ( PDF ) ( 13693KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫沥青冷再生技术是沥青混合料回收再生利用的一种有效方式,为进一步提升泡沫沥青冷再生混合料的界面黏附性能,选取了三种材料对泡沫沥青冷再生混合料进行改性研究,从微观分子与宏观性能角度实现了对泡沫沥青冷再生混合料界面黏附性提升原理的分析与性能验证。首先,选取氧化锌、偶联剂与抗剥落剂作为增强泡沫沥青冷再生混合料界面黏附性的改性材料;其次,以扩散行为和剪切破坏强度为分析对象探究了泡沫沥青冷再生混合料界面黏附性的提升机制;最后,对改性泡沫沥青冷再生混合料路用性能进行了验证。结果表明,对泡沫沥青冷再生混合料界面黏附性提升效果最显著的是偶联剂,其可以有效改善泡沫沥青冷再生混合料的疲劳性能、低温性能和劈裂强度,还使混合料具有极佳的扩散能力与剪切破坏强度;抗剥落剂对混合料的提升效果较好,高温时混合料的剪切破坏强度高于前者,但扩散性能较差;从能量变化角度分析,氧化锌对混合料的提升效果最好,但氧化锌总体改性效果一般。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周雯怡
易军艳
陈卓
冯德成
关键词:  道路工程  泡沫沥青冷再生混合料  界面黏附性  分子模拟  路用性能    
Abstract: Foamed asphalt cold recycled technology is an effective way to regenerate asphalt mixture. To further enhance the interface adhesion of foamed asphalt cold recycled mixture, three kinds of amendments were selected to study modification of foamed asphalt cold recycled mixture. Interface adhesion enhancement principle analysis and performance verification of foamed asphalt cold recycled mixture were conducted from the point of microscopic molecular and macroscopic performance. Firstly, zinc oxide, coupling agent and anti-stripping agent were selected as amendments for foamed asphalt cold recycled mixture. Secondly, diffusion behavior and shear stress were calculated for foamed asphalt cold recycled mixture and other three modified foamed asphalt cold recycled mixture to analyze the interface adhesion enhancement principle. Finally, the macroscopic performances of the modified foamed asphalt cold recycled mixture were verified. The results show that the coupling agent has an excellent enhancement effect on foamed asphalt cold recycled mixture. The fatigue performance, low-temperature anti-cracking performance and splitting strength of the coupling agent modified foamed asphalt cold recycled mixture are improved effectively. What's more, the diffusion ability and shear stress are fantastic. The enhancement effect of the anti-stripping agent is medium. Though the shear stress of the anti-stripping agent modified foamed asphalt cold recycled mixture at high temperature is higher than that of the coupling agent, its diffusion ability is worse. From the perspective of energy variation, the enhancement effect of zinc oxide is the best, but the overall modification effect of zinc oxide is relatively general.
Key words:  road engineering    foamed asphalt cold recycled mixture    interface adhesion    molecular simulation    pavement performance
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U416.217  
基金资助: 国家自然科学基金(51878229)
通讯作者:  *yijunyan@hit.edu.cn   
作者简介:  周雯怡,2020年6月于哈尔滨工业大学获得工学硕士学位。现为哈尔滨工业大学交通科学与工程学院博士研究生,在易军艳教授的指导下进行研究。目前主要研究领域为沥青材料再生。易军艳,哈尔滨工业大学交通科学与工程学院教授、博士研究生导师。2006年哈尔滨工业大学道路与桥梁专业本科毕业,2008年哈尔滨工业大学道路与铁道工程专业硕士毕业,2012年哈尔滨工业大学道路与铁道工程专业博士毕业后在哈尔滨工业大学交通科学与工程学院工作至今。目前主要从事固废资源化与路面再生及养护材料研发等方面的研究工作。发表论文80余篇,包括ACS Applied Materials & Interfaces、 Construction & Building Materials、Energy & Fuels、《中国公路学报》等。
引用本文:    
周雯怡, 易军艳, 陈卓, 冯德成. 泡沫沥青冷再生混合料界面黏附性提升原理与路用性能验证[J]. 材料导报, 2022, 36(16): 21110120-9.
ZHOU Wenyi, YI Junyan, CHEN Zhuo, FENG Decheng. Interface Adhesion Enhancement Principle and Pavement Performance Verification of Foamed Asphalt Cold Recycled Mixture. Materials Reports, 2022, 36(16): 21110120-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110120  或          http://www.mater-rep.com/CN/Y2022/V36/I16/21110120
1 Gu F, Ma W, West R C, et al. Journal of Cleaner Production, 2018, 208, 1513.
2 Ebels L J, Jenkins K. Advanced Characterization of Pavement and Soil Engineering Materials, 2007, 1, 607.
3 Ramanujam J M, Jones J D. International Journal of Pavement Enginee-ring, 2007, 8(2), 111.
4 Wacker B, Kalantari M, Diekmann M. In: Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9. Springer, 2020, pp. 813.
5 Xiao F P, Yao S L, Wang J G, et al. Construction and Building Mate-rials, 2018, 180, 579.
6 Chen Z, Yi J Y, Zhao H, et al. Construction and Building Materials, 2021, 269, 121324.
7 Yao Q Z. Microscopic study and performance analysis of strength formation structure of foamed bitu-minous recycled mixture. Master's Thesis, Harbin Institute of Technology, China, 2018(in Chinese).
姚柒忠. 泡沫沥青再生混合料强度形成结构的微观研究及性能分析. 硕士学位论文, 哈尔滨工业大学, 2018.
8 Xu J Z. Technical performance of foamed asphalt and foamed asphalt cold recycled mix. Ph.D. Thesis, Chang'an University, China, 2007(in Chinese).
徐金枝. 泡沫沥青及泡沫沥青冷再生混合料技术性能研究. 博士学位论文, 长安大学, 2007.
9 Li Y S. Study on application performance of foamed asphalt in seasonal freezing environment. Master's Thesis, Jilin University, China, 2019(in Chinese).
李颖松. 季冻环境下泡沫沥青应用性能研究. 硕士学位论文, 吉林大学, 2019.
10 Zhao B, Shen A Q, Guo Y C, et al. Journal of China & Foreign Highway, 2018, 38(2), 252(in Chinese).
赵宾, 申爱琴, 郭寅川, 等.中外公路, 2018, 38(2), 252.
11 Academy Asphalt. The design and use of foamed bitumen treated mate-rials, Asphalt Academy Pretoria, South Africa, 2002.
12 Li Z G, Hao P W, Liu H Y, et al. Journal of Cleaner Production, 2019, 230, 956.
13 Du S W, Huang D F. Applied Mechanics and Materials,2012,178-181,1379.
14 Li Q, Wang Z B, Li Y L, et al. Construction and Building Materials, 2018, 169, 306.
15 Pitawala S, Sounthararajah A, Grenfell J, et al. Construction and Buil-ding Materials, 2019, 216, 1.
16 Iwański M M, Chomicz-Kowalska A, Maciejewski K. Materials, 2020, 13(3), 654.
17 Li X J, Gao S Z, Zhao L H, et al. Journal of Building Materials, 2021, 24(4), 874(in Chinese).
李秀君, 高世柱, 赵麟昊, 等.建筑材料学报, 2021, 24(4), 874.
18 Chomicz-Kowalska A, Iwański M M, Mrugała J. In: IOP Conference Series, Materials Science and Engineering. Korea, 2017.
19 You L Y, You Z P, Dai Q L, et al. Journal of Materials in Civil Engineering, 2018, 30(11), 4018270.
20 Li R, Pei J Z, Sun C L. Construction and Building Materials, 2015, 98, 656.
21 Segundo I R, Ferreira C, Freitas E F, et al. Construction and Building Materials, 2018, 166, 500.
22 Rocha Segundo I G D, Dias E A L, Fernandes F D P, et al. Road Materials and Pavement Design, 2019, 20(6), 1452.
23 Gao H Y, Zhang Z G. Jiangxi Chemical Industry, 2003(2), 30(in Chinese).
高红云, 张招贵.江西化工, 2003(2), 30.
24 Biagioni C, Bonaccorsi E, Merlino S, et al. Cement and Concrete Research, 2013, 49, 48.
25 Bonaccorsi E, Merlino S, Kampf A R. Journal of the American Ceramic Society, 2005, 88(3), 505.
26 Xu M. Design and performance verification of rejuvenator based on mole-cular diffusion fusion mechanism. Ph.D. Thesis, Harbin Institute of Technology, China, 2019(in Chinese).
许勐. 基于分子扩散融合机制的沥青再生剂设计与性能验证. 博士学位论文, 哈尔滨工业大学, 2019.
27 Zhang Y L, Dang Y, He P A. Computer Engineering and Applications, 2005(33), 83(in Chinese).
张宇镭, 党琰, 贺平安. 计算机工程与应用, 2005(33), 83.
[1] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[2] 丁滔, 金珊珊, 索智, 季节, 张扬. 嵌锁式沥青稳定碎石配合比设计及性能研究[J]. 材料导报, 2022, 36(Z1): 22030296-5.
[3] 屠艳平, 陈国夫, 程子扬, 程书凯. 纳米SiO2对再生骨料沥青混凝土性能的影响[J]. 材料导报, 2022, 36(Z1): 22030139-5.
[4] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[5] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[6] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[7] 杨彦海, 王汉彬, 杨野. 冻融循环作用下乳化沥青冷再生混合料空隙特性[J]. 材料导报, 2022, 36(16): 21110128-7.
[8] 岳红亚, 毕玉峰, 徐 润, 张常勇, 丁婷婷, 李怀峰, 刘晓威, 宋修广. 废旧轮胎在道路工程中的应用研究进展[J]. 材料导报, 2022, 36(16): 22040129-11.
[9] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[10] 李文博, 柳力, 刘朝晖, 刘俊豪. 促溶-表面处理二元复合作用对橡胶沥青性能的影响[J]. 材料导报, 2022, 36(11): 21010088-7.
[11] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[12] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[13] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[14] 焦卫卫, 候春莉, 邹敏, 张海鹏. 超润滑技术的研究现状与发展方向[J]. 材料导报, 2021, 35(Z1): 476-480.
[15] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed