Please wait a minute...
材料导报  2022, Vol. 36 Issue (15): 21050259-7    https://doi.org/10.11896/cldb.21050259
  金属与金属基复合材料 |
考虑实际边界条件的辊式淬火过程温度场数值模拟
杨一1,2, 庞玉华1,2,*, 孙琦1,2, 董少若1,2, 刘东3
1 西安建筑科技大学冶金工程学院,西安 710055
2 陕西省冶金工程技术研究中心,西安 710055
3 西北工业大学材料学院,西安 710072
Numerical Simulation of Temperature Field in the Roller Quenching Process Considering Actual Boundary Conditions
YANG Yi1,2, PANG Yuhua1,2,*, SUN Qi1,2, DONG Shaoruo1,2, LIU Dong3
1 School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 Metallurgical Engineering Technology Research Center,Shaanxi Province, Xi'an 710055, China
3 School of Materials, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 5741KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以N800CF辊式淬火实际工况为研究对象,采用Fluent有限元分析软件,基于对淬火机内缝隙、高密Ⅰ、高密Ⅱ等不同类型喷嘴射流换热边界条件的计算及实验验证。为考虑沸腾传热的影响引入影响系数对射流换热边界进行修正,确立了准确的换热边界条件。以每个喷嘴作用区域为独立传热单元,建立了温度场仿真模型,实现了对钢板任意位置温度的预测。结果表明:不同喷嘴射流换热边界条件经0~0.62相关影响系数修正后,计算温度与实测温度的最大误差不超过1.25%,辊式淬火过程中,钢板表面呈现周期性锯齿状降温过程,心部则呈现连续平稳的降温过程,淬后钢板边部温度较低,其余部分温度分布均匀;在高压段,钢板快速冷却,但内部温度梯度较大,最大温差高达743.6 ℃,是辊式淬火过程调控的关键。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨一
庞玉华
孙琦
董少若
刘东
关键词:  辊式淬火机  射流换热边界  沸腾传热  温度场    
Abstract: This work defined accurate heat transfer boundary conditions, took each nozzle's action area as an independent heat transfer unit, established a temperature field simulation model, and realized the prediction of temperature at any position of steel plate, by means of taking the actual working conditions of N800CF roller quenching as the research object, adopting Fluent finite element analysis software, based on the calculation and experimental verification of the jet heat transfer boundary conditions of different types of nozzles such as the internalslit of the quenching machine, high density I, high density Ⅱ, etc., and considering that the introduce of the influence of boiling heat transfer affects coefficient to correct the jet heat transfer boundary. The results show that the jet heat transfer boundary conditions of different nozzles are corrected by the correlation coefficient of 0—0.62, and that the maximum error between the calculated temperature and the measured temperature does not exceed 1.25%. During the roller quenching process, the surface of the steel plate exhibits a periodic zigzag cooling process, while the core area presents a continuous and stable cooling process, the edge temperature of the steel plate after quenching is low, and the temperature distribution of the rest is even; the steel plate cools down rapidly in the high pressure section, but its internal temperature gradient is large, with a maximum temperature difference 743.6 ℃, which is the key point to the roller quenching process control.
Key words:  roller quenching machine    jet heat transfer boundary    boiling heat transfer    temperature field
出版日期:  2022-08-10      发布日期:  2022-08-15
ZTFLH:  TG156.34  
基金资助: 陕西省重点研发计划(2020GY-253)
通讯作者:  *pyhyyl@126.com   
作者简介:  杨一,2014—2018年毕业于西安建筑科技大学,获工学学士学位,2018—2021年毕业于西安建筑科技大学,获工学硕士学位。主要从事金属成型工艺及金属热处理工艺的研究。
庞玉华,1984—1988年毕业于东北大学,获工学学士学位,1988—1991年毕业东北大学,获得工学硕士学位,1996—2001年获得西北工业大学工学博士学位,现为西安建筑科技大学冶金工程学院教授、西安建筑科技大学硕士研究生导师。主要研究方向包括稀有金属材料加工、轧制新技术新工艺、先进钢结构工程材料制备等。发表学术论文70余篇,专利50余项。
引用本文:    
杨一, 庞玉华, 孙琦, 董少若, 刘东. 考虑实际边界条件的辊式淬火过程温度场数值模拟[J]. 材料导报, 2022, 36(15): 21050259-7.
YANG Yi, PANG Yuhua, SUN Qi, DONG Shaoruo, LIU Dong. Numerical Simulation of Temperature Field in the Roller Quenching Process Considering Actual Boundary Conditions. Materials Reports, 2022, 36(15): 21050259-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21050259  或          http://www.mater-rep.com/CN/Y2022/V36/I15/21050259
1 Frolov A E, Strashko A F, Pyatalov V I, et al. Metallurgist, DOI: 10.1007/BF01087767.
2 Watanabe H, Mukai T, Ishikawa K, et al. Materials Science & Enginee-ring A, DOI: 10.1016/S0921-5093(00)01974-2.
3 Zhang J K, Dong H, Zhou E Z. Heat Treatment of Metals, 2016, 41(12), 164 (in Chinese).
张敬奎, 董华, 周恩泽. 金属热处理, 2016, 41(12), 164.
4 Wang C, Yuan G, Wang Z D, et al. Journal of Northeastern University(Natural Science), 2011, 32(7), 968 (in Chinese).
王超, 袁国, 王昭东, 等. 东北大学学报(自然科学版), 2011, 32(7), 968.
5 Hua W. Numerical simulation research on roller quenching process of medium and heavy plate. Master's Thesis, Northeastern University, China, 2011 (in Chinese)
华望. 中厚板辊式淬火过程数值模拟研究.硕士学位论文, 东北大学, 2011.
6 Yuan G, Wang G D, Wang Z D. Journal of Northeastern University(Natural Science), 2010, 31(4), 527 (in Chinese).
袁国, 王国栋, 王昭东.东北大学学报(自然科学版), 2010, 31(4), 527.
7 Chen S J, Tseng A A. International Journal of Heat and Fluid Flow, 1992, 13(4), 358.
8 Fu T L, Han J, Deng X T, et al. Journal of Northeastern University(Natural Science), 2017, 38(11), 1548 (in Chinese).
付天亮, 韩钧, 邓想涛, 等. 东北大学学报(自然科学版), 2017, 38(11), 1548.
9 Niu J, Wen Z, Wang J S. Hot Working Technology, 2006(11), 66 (in Chinese).
牛珏, 温治, 王俊升.热加工工艺, 2006(11), 66.
10 Fu T L, Deng X T, Han J, et al. Chinese Journal of Engineering, 2017, 39(9), 1339 (in Chinese).
付天亮, 邓想涛, 韩钧, 等. 工程科学学报, 2017, 39(9), 1339.
11 Fu T L, Tian X H, Han J, et al. Journal of Harbin Institute of Technology, 2019, 51(11), 122 (in Chinese).
付天亮, 田秀华, 韩钧, 等. 哈尔滨工业大学学报, 2019, 51(11), 122.
12 Hollander F. Iron and Steel Inst, 1970,7(3), 46.
13 Hoogendoorn C J. Pergamon, 1977,20, 1333.
14 Huang Y, Ekkad S V, Han J C.In: 9th International Symposium on Transport Phenomena in Thermal Fluids Engineering(ISPT). London, 1996, pp. 25.
15 Liu G Y, Zhu D M, Zhang S J. et al. Chinese Journal of Engineering, 2006 (6), 581 (in Chinese).
刘国勇, 朱冬梅, 张少军, 等. 工程科学学报, 2006 (6), 581.
16 Liu G Y, Zhu D M, Zhang S J, et al. Chinese Journal of Engineering, 2009, 31(5), 638 (in Chinese).
刘国勇, 朱冬梅, 张少军, 等. 工程科学学报, 2009, 31(5), 638.
17 Zhou N, Yu M, Wu D, et al. Steel Rolling, 2008(2), 7 (in Chinese).
周娜, 于明, 吴迪,等. 轧钢, 2008(2),7.
18 Metzger D E, Korstad R J. Amercan Society of Mechanical Engineers, 1994,13(4), 526.
19 Xie H, Zhang J Z. Energy Research & Utilization, 2005(5), 45 (in Chinese).
谢浩, 张靖周. 能源研究与利用, 2005(5), 45.
20 Steffen W, Hermann W, Eckehard S,et al. International Journal of Thermal Sciences, 2018, 7(4), 134.
21 Mehran G, Abas R, Ali A R. Journal of Thermal Analysis and Calorimetry, 2019, 136(6), 1413.
22 Gao T H, Ying L, Dai M H,et al. International Journal of Thermal Sciences, 2019, 11(4), 139
23 Zhao Z N. Heat transfer, Higher Education Press, China, 2008 (in Chinese).
赵镇南.传热学, 高等教育出版社, 2008.
24 王昭东, 王藜筠, 袁国, 等.中国专利, 101020196, 2007.
25 Wolf D H, Viskanta R, Incropera F P. Journal of Heat Transfer, 1990, 112(11), 899.
26 Yang Y C. Hot Working Technology, 2013, 42(20), 184 (in Chinese).
杨永春. 热加工工艺, 2013, 42(20), 184.
27 Wutian N Y (Author), Zhu H(Translator). Metallurgical Science and Technology Translation. Translation, 1989(1), 57 (in Chinese).
武田年彦(著), 朱鸿基(译).冶金科技译丛, 1989(1), 57.
28 Wang F L. Research on numerical simulation and controlled cooling model of controlled cooling process of medium and heavy plate. Ph.D. Thesis, University of Science and Technology Bejing, China, 2003 (in Chinese).
王峰丽.中厚板控冷过程的数值模拟及控冷模型研究.博士学位论文, 北京科技大学, 2003.
[1] 崔朝兴, 董世运, 胡效东, 闫世兴, 姜浩涌. 激光熔化沉积成形过程数值模拟研究现状[J]. 材料导报, 2022, 36(2): 20040221-6.
[2] 张昌青, 师文辰, 罗德春, 王树文, 刘晓, 崔国胜, 陈波阳, 张忠科, 辛舟, 芮执元. 锥形端面对铝/钢连续驱动摩擦焊温度场的数值模拟研究[J]. 材料导报, 2022, 36(15): 21040043-7.
[3] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[4] 朱军, 李姝, 王斌, 张驰, 李冬, 康敏. 钒氮合金制备过程温度场模拟[J]. 材料导报, 2020, 34(22): 22100-22104.
[5] 乔及森, 芮正雷, 王磊, 陈振文. 基于组合热源模型焊剂片约束电弧焊T形接头温度场及应力场计算与试验研究[J]. 材料导报, 2020, 34(22): 22142-22147.
[6] 苏 岚,张楚博,汪 振,米振莉. 热金属气压成型电磁感应加热有限元模拟[J]. 《材料导报》期刊社, 2017, 31(24): 182-177.
[7] 周慧子, 肖寒, 曾文文, 王瑞雪, 程明, 张士宏. 不同温度加载模式AZ31镁合金型材张力绕弯成形数值模拟*[J]. 《材料导报》期刊社, 2017, 31(18): 131-135.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed