Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14130-14135    https://doi.org/10.11896/cldb.20060043
  金属与金属基复合材料 |
锈损冷弯薄壁钢板的断裂机制与断裂模型
徐善华*, 赵晓蒙, 张海江, 张宗星, 王亮
西安建筑科技大学土木工程学院,西安 710055
Fracture Mechanism and Fracture Model of Cold-formed Thin-Walled Steel Plates with Rust Loss
XU Shanhua*, ZHAO Xiaomeng, ZHANG Haijiang, ZHANG Zongxing, WANG Liang
School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 6219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究锈蚀对冷弯薄壁钢板断裂机制的影响,本工作选取在工业环境中服役多年的C形钢檩条,从其平板部位和弯角部位截取标准试件进行单调拉伸试验,并通过有限元数值分析研究了锈坑深度、深径比和截面损失率对其应力三轴度和等效塑性应变的影响。拉伸试验结果表明:随锈蚀程度增大,试件的塑性硬化阶段和颈缩阶段逐渐缩短,屈服阶段逐渐消失;试件的屈服强度、极限强度和断裂应变逐渐减小。有限元分析结果表明:应力三轴度随锈坑深度和深径比增加逐渐增大,随截面损失率的增加变化不显著;等效塑性应变随锈坑深度和截面损失率增加明显增大,随锈坑深径比增加呈现先增大后减小的趋势。本工作还建立了应力三轴度和等效塑性应变相对值与锈坑深度、深径比和截面损失率的拟合公式,根据拟合结果,对空穴增长模型(VGM模型)和应力修正临界应变模型(SMCS模型)进行修正,从而推导出点蚀损伤和全面腐蚀损伤下冷弯薄壁钢板的断裂模型。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐善华
赵晓蒙
张海江
张宗星
王亮
关键词:  锈蚀  冷弯薄壁钢板  断裂机制  空穴增长模型(VGM模型)  应力修正临界应变模型(SMCS模型)    
Abstract: In order to study the effects of corrosion damage on the fracture mechanism of cold-formed thin-walled steel plates, tensile tests were conducted on the standard specimens which were processed from the flat and corner parts of C-shaped steel purlin that has been used in an industrial environment for many years. The effects of rust pit depth,the depth-radius ratio and section loss rate on stress triaxiality and equivalent plastic strain of the model were studied by finite element numerical analysis. The tensile test results show that as the degree of rust increases, the plastic hardening stage and necking stage gradually shorten, and the yield stage gradually disappears, and the yield strength, ultimate strength and fracture strain of the specimen gradually decrease. The results of finite element analysis show that the stress triaxiality gradually increases with the increase of the rust pit depth and depth-radius ratio, but does not change significantly with the increase of the section loss rate. The equivalent plastic strain increases significantly with the increase of the rust pit depth and section loss rate, but first increases and then decreases with the increase of the depth-radius ratio. According to the fitting results, the void growth model (VGM model) and the stress modified critical strain mo-del (SMCS model) are modified to derive the fracture model of cold-formed thin-walled steel plates under pitting damage and comprehensive corrosion damage.
Key words:  corrosion    thin-walled steel plates    fracture mechanism    the void growth model (VGM model)    the stress modified critical strain model (SMCS model)
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TU511  
基金资助: 国家自然科学基金(51678477);国家重点研发计划(2016YFC0701305)
通讯作者:  * xushanhua@163.com   
作者简介:  徐善华,博士(后),教授,博士研究生导师,国家一级注册结构工程师,西安建筑科技大学结构工程学科学术带头人。主要从事混凝土结构与钢结构耐久性研究,主持国家自然科学基金面上项目4 项,“十三五”国家重点研发计划项目1项,省部级科研项目10余项,中国博士后基金1 项。参与编制国家标准规范3部, 发表学术论文100余篇, 参编著作2部。获国家科技进步二等奖1项,陕西省科学技术一等奖1 项、 二等奖1项、三等奖 1 项、陕西省教育厅科学技术一等奖 2 项、 二等奖 1 项。
引用本文:    
徐善华, 赵晓蒙, 张海江, 张宗星, 王亮. 锈损冷弯薄壁钢板的断裂机制与断裂模型[J]. 材料导报, 2021, 35(14): 14130-14135.
XU Shanhua, ZHAO Xiaomeng, ZHANG Haijiang, ZHANG Zongxing, WANG Liang. Fracture Mechanism and Fracture Model of Cold-formed Thin-Walled Steel Plates with Rust Loss. Materials Reports, 2021, 35(14): 14130-14135.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060043  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14130
1 Li Y Q, Xu H J. Journal of Building Structure, 2019, 49(19), 91(in Chinese).
李元齐, 徐厚军.建筑结构, 2019,49(19),91.
2 Zhong G H. Progress in Steel Building Structures, 2002, 4(4), 31(in Chinese).
钟国辉.建筑钢结构进展, 2002,4(4),31.
3 Xu S H, Wang H, Su L, et al. Journal of Southeast University (Natural Science Edition), 2016,46(6),1257(in Chinese).
徐善华, 王皓, 苏磊, 等.东南大学学报(自然科学版), 2016,46(6),1257.
4 Qiu B, Xu S H. Materials for Mechanical Engineering, 2014,38(10), 60(in Chinese).
邱斌, 徐善华.机械工程材料, 2014,38(10),60.
5 Wang Y D, Xu S H, Wang H, et al. Construction and Building Mate-rials, 2017,152,777.
6 Nie B, Xu S H, Yu J, et al. Journal of Constructional Steel Research, 2019,162,1.
7 Xu S H, Li R, Su C, et al. Journal of Harbin Institute of Technology, 2018,50(12),74(in Chinese).
徐善华, 李柔, 苏超, 等.哈尔滨工业大学学报, 2018,50(12),74.
8 Rice J R, Tracey D M. Journal of the Mechanics and Physics of Solids,1969,17,201.
9 Hancock J W, Mackenzie A C. Pergamon,1976,24,147.
10 Johnson G R, Cook W H. Pergamon,1985,21,31.
11 Gurson A L. Journal of Engineering Materials & Technology,1977,99,2.
12 Liao F F, Wang W, Chen Y Y. Structural Engineering and Mechanics, 2012,42,153.
13 Xing J H, Guo C L, Zhang P, et al. Journal of Building Materials, 2015,18(2),228(in Chinese).
邢佶慧,郭长岚, 张沛,等.建筑材料学报, 2015,18(2),228.
14 Zhou H, Wang Y Q, Shi Y J, et al. Engineering Mechanics, 2015,32(5),37(in Chinese).
周晖, 王元清, 石永久, 等.工程力学, 2015,32(5),37.
15 Metallic materials-tensile testing at ambient temperature: GB/T 228- 2010. Standards Press of China, 2010(in Chinese).
金属材料室温拉伸试验: GB/T 228-2010. 中国标准出版社,2010.
16 Liu X Y, Wang Y Q, Shi Y J. Journal of Building Structures, 2016,37(6), 228(in Chinese).
刘希月,王元清,石永久. 建筑结构学报, 2016,37(6), 228.
[1] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[2] 郑山锁, 杨建军, 郑跃, 董立国, 温桂峰, 姬金铭. 锈蚀钢筋混凝土粘结滑移性能综述[J]. 材料导报, 2020, 34(Z2): 221-226.
[3] 冯光岩, 金祖权, 熊传胜, 范君峰. 海洋潮汐区暴露700 d带裂缝混凝土中耐蚀钢筋的锈蚀行为[J]. 材料导报, 2020, 34(8): 8064-8070.
[4] 孙杨,乔国富. 锈蚀钢筋与混凝土粘结性能研究综述[J]. 材料导报, 2020, 34(3): 3116-3125.
[5] 徐善华, 夏敏. 锈蚀钢材表面的分形维数与多重分形谱[J]. 材料导报, 2020, 34(16): 16140-16143.
[6] 王朝阳, 周全, 杨鸥, 霍静思, 王海涛. 钢筋锈蚀率对钢筋与混凝土黏结性能的影响[J]. 材料导报, 2019, 33(Z2): 309-316.
[7] 陈俊, 张白, 杨鸥, 龙士国, 许福, 杨才千. 黏结长度对锈蚀钢筋与混凝土间黏结性能的影响[J]. 材料导报, 2019, 33(22): 3744-3751.
[8] 王潇舷, 金祖权, 姜玉丹, 陈凡秀. 基于DIC与应变测试的混凝土中钢筋锈胀应力分析[J]. 材料导报, 2019, 33(16): 2690-2696.
[9] 辛景舟, 周建庭, 周应新, 苏欣, 冉文兴. 考虑材料劣化的钢筋混凝土压弯构件承载力演化试验研究[J]. 材料导报, 2019, 33(14): 2362-2369.
[10] 李哲, 金祖权, 邵爽爽, 徐翔波. 海洋环境下混凝土中钢筋锈蚀机理及监测技术概述[J]. 材料导报, 2018, 32(23): 4170-4181.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed