Please wait a minute...
材料导报  2021, Vol. 35 Issue (14): 14136-14141    https://doi.org/10.11896/cldb.20040002
  金属与金属基复合材料 |
高流速强湍流下低碳钢局部环烷酸腐蚀行为
张肖飞1, 马涛1, 华晓春1, 王孝义1, 饶思贤1,2,*
1 安徽工业大学机械工程学院,马鞍山 243032
2 合肥通用机械研究院,合肥 230031
Localized Naphthenic Acid Corrosion of Carbon Steel Under High Flow Rate and Strong Turbulence
ZHANG Xiaofei1, MA Tao1, HUA Xiaochun1, WANG Xiaoyi1, RAO Sixian1,2,*
1 School of Mechanical Engineering,AnHui University of Technology, Maanshan 243032, China
2 Hefei General Machinery Research Institute, Hefei 230031, China
下载:  全 文 ( PDF ) ( 6674KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 现如今加工劣质高酸原油已成为趋势,但高酸原油炼制中存在显著的环烷酸腐蚀现象。为了明确高流速强湍流对环烷酸腐蚀的影响,开展了不同冲刷角下的环烷酸腐蚀试验,同时进行了不同冲刷角下的流速和湍流强度模拟。结果表明:在不同冲刷角(0~90°)下,试样表面存在显著的流场改变,局部存在流速加剧和显著的湍流现象;高流速强湍流下环烷酸腐蚀速率与不同冲刷角下形成的湍流场相关,整体上随着冲刷角的增大,最大腐蚀深度呈上升趋势,在冲刷角为90°时局部腐蚀深度增加显著;90°冲刷角下环烷酸腐蚀可由局部腐蚀形态转换为局部点蚀形态,点蚀萌生于优先腐蚀的珠光体,并在高流速、强湍流作用下扩展、合并为宏观碟形点蚀坑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张肖飞
马涛
华晓春
王孝义
饶思贤
关键词:  环烷酸腐蚀  湍流强度  湍流场  冲刷角  点蚀坑    
Abstract: Nowadays, it has become a trend to process inferior high-acid crude oil, but there is significant naphthenic acid corrosion in the refining of high-acid crude oil. In order to clarify the effect of high velocity and strong turbulence on naphthenic acid corrosion, naphthenic acid corrosion experiments were carried out under different scour angles, and the velocity and turbulence intensity simulations under different scour angles were also performed. The results show that under different scouring angles (0—90°) there are significant changes in the flow field on the surface of the sample, and the velocity increase and local turbulence are localized. The corrosion rate of naphthenic acid under high velocities and strong turbulence is related to the turbulence field formed in different scouring angles. As the scour angle increases, the maximum corrosion depth tends to increase. When the scouring angle is 90°, the local corrosion depth increases significantly. At 90° scouring angle, the naphthenic acid corrosion can be transformed from the localized corrosion form to local pitting morphology. Pitting corrosion originated from the preferentially corroded pearlite and expanded and merged into macro dish-shaped pitting pits under the action of high flow velocity and strong turbulence.
Key words:  naphthenic acid corrosion    turbulence intensity    turbulence field    scour angle    pitting pits
               出版日期:  2021-07-25      发布日期:  2021-08-03
ZTFLH:  TE973  
基金资助: 国家高技术研究发展计划(2012AA040103);安徽省自然科学研究项目(KJ2016SD09;1908085ME148)
通讯作者:  * raosixian@ahut.edu.cn   
作者简介:  张肖飞,安徽工业大学,硕士研究生,2017在东北农业大学获得学士学位。研究方向:金属材料腐蚀与防护。
饶思贤,安徽工业大学教授,硕士研究生导师。2000年本科毕业于湖南大学化学化工学院,2007年10月博士毕业于北京航空航天大学材料科学与工程学院。2007年11月至安徽工业大学任教。2010—2012年在合肥通用机械研究院从事博士后研究工作。主要从事机械装备的失效诊断及金属腐蚀方面的研究工作。近五年来主持863子课题一项,十二五国家科技计划子课题一项,省高校优秀青年项目一项,作为主要研究人员参与了多项863、973的研究课题。在国内外期刊上发表论文三十余篇,其中SCI、EI检索二十余篇,获安徽省科技进步一等奖一项。
引用本文:    
张肖飞, 马涛, 华晓春, 王孝义, 饶思贤. 高流速强湍流下低碳钢局部环烷酸腐蚀行为[J]. 材料导报, 2021, 35(14): 14136-14141.
ZHANG Xiaofei, MA Tao, HUA Xiaochun, WANG Xiaoyi, RAO Sixian. Localized Naphthenic Acid Corrosion of Carbon Steel Under High Flow Rate and Strong Turbulence. Materials Reports, 2021, 35(14): 14136-14141.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040002  或          http://www.mater-rep.com/CN/Y2021/V35/I14/14136
1 Liang C L, Sun L L, Zhang L J, et al. Corrosion & Protection in Petrochemical Industry, 2013, 30(4), 26(in Chinese).
梁春雷, 孙丽丽, 张立金, 等.石油化工腐蚀与防护, 2013, 30(4), 26.
2 Chen X, Ai Z, Gao J. Pressure Vessel Technology, 2008, 19(5), 30.
3 Craig H. In: NACE—International Corrosion Conference Series. Denver, 2002.
4 Rao S X, Zhou Y, Pan Z W, et al. Journal of Mechanical Engineering, 2013,49(16), 70.
5 Jiang K, Chen X D, Yang T C, et al. Journal of Chinese Society for Corrosion and Protection, 2012, 32(1), 59(in Chinese).
江克, 陈学东, 杨铁成, 等. 中国腐蚀与防护学报, 2012, 32(1), 59.
6 Hass F, Abrantes A C T G, Diógenes A N, et al. Electrochimica Acta, 2014, 124, 206.
7 Kane R D, Cayard M S. Corrosion 2002, Houston, NACE International. Denver, 2002
8 Wu X Q, Jing H M, Zheng Y G, et al. Wear, 2004, 256, 133.
9 Liu G Q, Zhang X L, Qu D R, et al. Corrosion Engineering Science and Technology, 2016, 51(6),445.
10 Liu J Construction model of naphthenic acid corrosion under high temperature and high flow rate. Master's Thesis, Anhui University of Technology, China, 2017(in Chinese).
刘句. 高温高流速下环烷酸腐蚀预测模型构建. 硕士学位论文, 安徽工业大学, 2017.
11 Shi Y H, Xu Y F, Ma D Y, et al. Material Protection, 2014, 47(10), 61.
史艳华,徐燕飞,马大永,等. 材料保护, 2014, 47(10), 61.
12 Chen B F, Yang Q M. Corrosion Science and Protection Technology, 2007, 19(1), 74(in Chinese).
陈碧凤,杨启明.腐蚀科学与防护技术, 2007, 19(1), 74.
13 Javier Alberto Sanabria cala, Nerly Montaez, D Laverde Catao, et al. Journal of Physics: Conference Series, 4th International Meeting for Researchers in Materials and Plasma Technology, DOI:10.1088/1742-6596/935/1/012051.
14 Smart N R, Rance A P, Pritchard A M. In: NACE—International Corrosion Conference Series, Corrosion. Denver, 2002.
15 Peng J, Srdjan N. Corrosion Science. 2017, 115, 93.
16 Trasatti S P, Gabetta G. Corrosion Engineering Science and Technology, 2006, 41, 200.
17 Wu X Q, Jing H M, Zheng Y G. Journal of Materials Science, 2004,39(3), 975.
18 Bota G M, Qu D S, Wolf H A. In: NACE-International Corrosion Conference Series. United States, 2010.
19 Wang X, Shi Y, Shao C, et al. Transactions of Materials and Heat Treatment, 2013, 34(10), 160.
20 Liu J, Li H F, Zhou Y, et al. Acta Petrolei Sinica(Petroleum Processing Section), 2016,32(3),556(in Chinese).
刘句,李会峰,周煜,等.石油学报(石油加工), 2016, 32(3), 556.
21 Rao S X, Zhou Y, Pan Z W, et al. Journal of Mechanical Engineering, 2013, 49(12),142(in Chinese)).
饶思贤, 周煜, 潘紫微, 等. 机械工程学报, 2013, 49(12), 142.
22 Tan L W, Wang Z W, Zhou J Y, et al. Journal of Chongqing University of Technology (Natural Science), 2020,34(9).174(in Chinese).
谭力文,王忠维,邹竟翌,等.重庆理工大学学报(自然科学),2020,34(9),174.
23 Jauseau N, Nesic S. In:NACE-International Corrosion Conference Series, Corrosion.Vancouver, 2016, pp. 2733.
No related articles found!
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed