Please wait a minute...
材料导报  2021, Vol. 35 Issue (12): 12014-12019    https://doi.org/10.11896/cldb.20040027
  无机非金属及其复合材料 |
基于超材料的微波宽带完美吸波体设计
孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶
昆明理工大学信息工程与自动化学院,昆明 650504
Design of Microwave Broadband Perfect Absorber Based on Metamaterial
SUN Lei, SUN Jun, GAO Xiaomei, YANG Biao, ZHANG Jing, ZHOU Yao
School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China
下载:  全 文 ( PDF ) ( 4847KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了实现宽带平稳吸收电磁波,本工作设计了一种微波宽带完美超材料吸波体(Metamaterial absorber,MA)。使用等效电路模型和COMSOL仿真软件对其结构参数进行了优化仿真,通过电场和表面电流密度分布以及等效输入阻抗分析了MA宽带强吸收的机理,研究了其极化和斜入射特性以及各层结构的吸收响应。结果表明,电磁波正入射时MA在5~9.2 GHz的频率范围内达到了90%以上的吸收率,平均吸收率高达97.71%,特别是在5.9~8 GHz的宽带内实现了完美吸收电磁波(吸收率大于99%,反射率小于1%),并且具有良好的极化和宽入射角稳定特性。本工作提出的吸波结构整体厚度为0.12λ0,周期单元尺寸为0.29λ0×0.29λ00为吸收带中心频率的波长),通过改变中间介质层的介电常数能在保证波形基本不变的前提下调节工作频带,其具有良好的频带可移植性,能够应用于隐身技术和电磁兼容等领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙磊
孙俊
高晓梅
杨彪
张晶
周瑶
关键词:  超材料吸波体  宽带  完美吸收  微波    
Abstract: In order to achieve broadband stable absorption of electromagnetic wave, a microwave broadband perfect metamaterial absorber (MA) with a smooth absorption band is designedin this paper. The equivalent circuit model and COMSOL simulation software is used to optimize the structure parameters of the MA. The origin of the absorption mechanism is analyzed by the electric field and surface current distributions, and which is also explained by the equivalent input impedance. The polarization and oblique incidence characteristics and the absorption response of each layer are further studied. Results show that the absorptivity of the MA proposed in this paper is more than 90% in the range of 5—9.2 GHz, and the average absorption of the MA is 97.71%, perfect absorption happened in the broadband of 5.9—8 GHz (the absorptivity is more than 99%, and the reflectivity is less than 1%), and the structure has good polarization and wide incident angle stability. The thickness and unit size of the MA proposed in this paper are 0.12λ0 and 0.29λ0×0.29λ00 is the wavelength at the center frequency of the absorption band), respectively. Moreover, by changing the permittivity of the dielectric substrate, the operating band can be adjusted on the premise that the waveform is basically unchanged, it has good frequency band portability and can be applied to stealth technology, electromagnetic compatibility, and other fields.
Key words:  metamaterial absorber    broadband    perfect absorption    microwave
               出版日期:  2021-06-25      发布日期:  2021-07-01
ZTFLH:  TB34  
基金资助: 国家自然科学基金(61863020)
通讯作者:  em.junsun@gmail.com   
作者简介:  孙磊,硕士研究生。研究方向为电磁场与微波技术、电磁超材料。目前以第一作者发表SCI论文一篇。
孙俊,博士,硕士研究生导师。研究方向为电磁场与微波技术、超材料、电磁场数值计算、多物理场耦合仿真,以及其他与信息科学相关的前沿交叉学科。目前已发表EI、SCI论文10余篇。
引用本文:    
孙磊, 孙俊, 高晓梅, 杨彪, 张晶, 周瑶. 基于超材料的微波宽带完美吸波体设计[J]. 材料导报, 2021, 35(12): 12014-12019.
SUN Lei, SUN Jun, GAO Xiaomei, YANG Biao, ZHANG Jing, ZHOU Yao. Design of Microwave Broadband Perfect Absorber Based on Metamaterial. Materials Reports, 2021, 35(12): 12014-12019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20040027  或          http://www.mater-rep.com/CN/Y2021/V35/I12/12014
1 Sharma A, Gangwar D, Kanaujia B K, et al. Journal of Electromagnetic Waves and Applications, 2019, 33(5), 654.
2 Li Wenqiang, Cao Xiangyu, Gao Jun, et al. Acta Physica Sinica, 2015, 64(9), 259(in Chinese).
李文强,曹祥玉,高军,等. 物理学报, 2015, 64(9), 259.
3 Bakir M, Karaaslan M, Akgol O, et al. Optik, 2018, 168, 741.
4 Zhang Yuping, Li Tongtong, Lyu Huanhuan, et al. Acta Physica Sinica, 2015(11), 391(in Chinese).
张玉萍,李彤彤,吕欢欢,等. 物理学报, 2015(11), 391.
5 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20), 207402.
6 Sun L, Sun J, Yang B, et al.Materials Research Express, 2020, 6(12), 125805.
7 Ghobadi A, Hajian H, Gokbayrak M, et al. Optics Express, 2017, 25(22), 27624.
8 Cheng Yongzhi, Nie Yan, Gong Rongzhou, et al. Acta Physica Sinica, 2013, 62(4). 124(in Chinese).
程用志,聂彦,龚荣洲,等. 物理学报. 2013, 62(4). 124.
9 Sen G, Kumar M, Islam S N, et al. Waves in Random & Complex Media, DOI:10.1080/17455030.2017.1418099.
10 Yu Z, Lu G Z. Optik, 2015, 127(1), 387.
11 Ghosh S, Bhattacharyya S, Kaiprath Y, et al. Journal of Applied Physics, 2014, 115(10), 104503.
12 Liu Y, Shuai G, Luo C, et al. Applied Physics A, 2012, 108(1), 19.
13 Kundu D, Mohan A, Chakrabarty A. IEEE Antennas & Wireless Propagation Letters, 2016, 15, 1589.
14 Nguyen T T, Lim S. Scientific Reports, 2018, 8(1), 6633.
15 Michaël L, Mercy L, Michaël S, et al. Optics Express, 2014, 22(10), 12678.
16 Smith D R, Vier D C, Th K, et al. Physical Review E Statistical Nonli-near & Soft Matter Physics, 2005, 71(3 Pt 2B), 36617.
17 Ding F, Cui Y, Ge X, et al. Applied Physics Letters, 2012, 100(10), 103506.
18 Yuan W, Cheng Y. Applied Physics A, 2014, 117(4), 1915.
19 Hoa N T Q, Tung P D. Microwave & Optical Technology Letters, 2017, 59(5), 1157.
20 Sood D, Tripathi C C. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2017, 16(2), 514.
21 Nguyen T T, Lim S. Applied Physics Letters, 2018, 112(2), 21605.
22 Tuan T S, Lam V D, Hoa N T Q. Journal of Electronic Materials, 2019, 48(8), 5018.
[1] 杨博, 余金山, 顾全超, 王洪磊, 周新贵. SiCf/SiC复合材料制备研究进展[J]. 材料导报, 2021, 35(3): 3050-3056.
[2] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[3] 居殿春, 武兆勇, 张荣良, 王海风, 王锋, 严定鎏. 微波加热Mg-TiO2混合物的研究[J]. 材料导报, 2020, 34(Z1): 140-143.
[4] 杨智为, 周涵. 基于分形几何思路的超材料结构设计:综述[J]. 材料导报, 2020, 34(21): 21052-21060.
[5] 李梓进, 王维燕, 李红江, 黄金华, 徐清. 钙钛矿/晶硅叠层太阳电池关键材料与技术研究进展[J]. 材料导报, 2020, 34(21): 21061-21071.
[6] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[7] 王建, 龚志军, 李保卫, 徐国栋, 武文斐. 稀土尾矿矿物学分析及微波焙烧对其催化脱硝性能的影响[J]. 材料导报, 2020, 34(16): 16072-16076.
[8] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[9] 汪心坤, 赵芳, 王建江. Zn1-xCexO纳米纤维的电纺制备及其红外雷达兼容隐身性能[J]. 材料导报, 2019, 33(Z2): 83-88.
[10] 李保卫, 李鑫, 崔俊杰, 张宇轩, 张雪峰, 贾晓林, 欧阳顺利. 微波烧结制备玻璃陶瓷的研究进展[J]. 材料导报, 2019, 33(Z2): 189-197.
[11] 文立伟, 王若舟, 谢飞. 通过调节工艺参数控制热熔法制备的自动铺丝预浸纱的展开质量[J]. 材料导报, 2019, 33(Z2): 599-603.
[12] 李红霞, 李保卫, 邓磊波, 徐鹏飞, 刘中兴. 微波热处理温度对尾矿微晶玻璃晶化过程及性能的影响[J]. 材料导报, 2019, 33(20): 3401-3407.
[13] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[14] 吕斌, 余亚金, 高党鸽, 马建中, 苏姣姣. 微波水热法制备磺酸盐型Gemini表面活性剂及其表征[J]. 材料导报, 2019, 33(2): 357-362.
[15] 王强, 王岩, 黄小忠, 熊益军, 张芬. 新型全介质谐振表面二元超材料吸波体[J]. 材料导报, 2019, 33(2): 363-367.
[1] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Tao YAN,Guimin LIU,Shuo ZHU,Linfei DU,Yang HUI. Current Research Status of Electromagnetic Rail Materials Surface Failure and Strengthen Technology[J]. Materials Reports, 2018, 32(1): 135 -140 .
[4] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[5] Dingfa FU,Yu LENG,Wenli GAO. Effect of Microalloying Element Niobium on the Strength and Toughness of Low Carbon Cast Steels[J]. Materials Reports, 2018, 32(2): 237 -242 .
[6] YU Yan, MA Fengsen, LU Jiajun, CHEN Haibo. In Vitro Cytotoxicity Evaluation of Cellulose Absorbable Hemostatic Materials[J]. Materials Reports, 2018, 32(6): 874 -880 .
[7] SHI Yuanji, WU Xiaochun, MIN Na. Thermal Stability Mechanism of Fe-Cr-Mo-W-V Hot Working Die Steel[J]. Materials Reports, 2018, 32(6): 930 -936 .
[8] BAI Yuanrui, MA Jianzhong, LIU Junli, BAO Yan, CUI Wanzhao, HU Tiancun, WU Duoduo. Construction of Silver Film by Colloidal Crystal Template and Its Micro-discharge Inhibition Performance[J]. Materials Reports, 2018, 32(4): 515 -519 .
[9] LI Yong, ZHU Jing, WANG Ying, LI Huan, ZHAO Yaru. Formation Mechanism of Band Structure in Directionally Solidified Cu-0.33Cr-0.1Ti Hypoeutectic Alloy[J]. Materials Reports, 2018, 32(4): 602 -605 .
[10] LI Hui, CHEN Jiayong, DUAN Xiaoge, JIANG Haitao. Stability and TRIP Effect of Retained Austenite of Medium Manganese Q&P Steel[J]. Materials Reports, 2018, 32(4): 611 -615 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed