Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16149-16154    https://doi.org/10.11896/cldb.19010031
  高分子与聚合物基复合材料 |
离子双交联海藻酸钠/聚(丙烯酰胺-co-丙烯酸)高强度水凝胶的研究
李学锋1,2, 王慧2, 龙世军1,2, 黄以万1,2, 李海燕3
1 湖北工业大学绿色轻工材料湖北省重点实验室,武汉 430068;
2 湖北工业大学材料与化学工程学院,武汉 430068;
3 上海交通大学生物医学工程学院,上海 200030
Study on Dual Ionically Crosslinked Sodium Alginate/Poly(acrylamide-co-acrylic acid) High Strength Hydrogel
LI Xuefeng1,2, WANG Hui2, LONG Shijun1,2, HUANG Yiwan1,2, LI Haiyan3
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China;
2 School of Materials Science and Engineering, Hubei University of Technology, Wuhan 430068, China;
3 School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
下载:  全 文 ( PDF ) ( 4719KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用海藻酸盐分子和共聚物链上丰富的羧基与多价金属离子的高配位能力,采用“一步法”离子双交联制备了高强度、高韧性的海藻酸钠/聚(丙烯酰胺-co-丙烯酸)-Fe3+(S/P-Fe3+)双网络水凝胶。对浸泡多种金属离子(Na+、Ca2+、Cu2+、Al3+、Fe3+)溶液得到的金属离子双交联水凝胶的力学性能展开研究,结果表明,随着金属离子价态的升高,水凝胶的力学强度逐渐增大,其中铁离子的增强效果最好。通过优化SA含量、AAc与AAm的比例以及Fe3+浓度,获得最佳配比的S/P-Fe3+(SA 2%(质量分数,下同),AAc 5%(摩尔分数,下同)和Fe3+ 0.06 mol/L)高强度水凝胶,其力学性能优越(拉伸强度3.24 MPa,断裂伸长率1 228%),同时该离子双交联高强度水凝胶还具有高的含水量(76%)。此外,S/P-Fe3+水凝胶的交联强度受环境影响,通过pH值变化可调节其力学性能,使其具备形状记忆性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李学锋
王慧
龙世军
黄以万
李海燕
关键词:  金属离子  离子双交联  水凝胶  高强度  形状记忆性    
Abstract: High strength and toughness dual ionically crosslinked sodium alginate/poly(acrylamide-co-acrylic acid) (S/P-Fe3+) double network hydrogels were prepared by “one-step” dual ionically crosslinking. We take advantage of the abundant carboxyl groups on alginate molecules and the copolymer chains and their high coordination capacity with multivalent cations to obtain high strength and toughness. The mechanical properties of hydrogels with different cations dual crosslinked were obtained by soaking different cations (Na+, Ca2+, Cu2+, Al3+, Fe3+), the results show that the mechanical strength of hydrogels increases with the increase of the valence state of cations, among which the mechanical properties of Fe3+ dual crosslinked hydrogels are much higher than the other cations. By adjusting the content of SA, the ratio of AAc to AAm, and the concentration of Fe3+, the optimal S/P-Fe3+ (SA 2wt% and AAc 5mol%) hydrogels showed a remarkable mechanical performance with 3.24 MPa tensile strength and 1 228% strain, both of which remained stable with 76% water content. In addition, the crosslinked strength of S/P-Fe3+ hydrogel is affected by the environment of pH, and the hydrogels with different mechanical properties and shape memory can be obtained by pH adjustment.
Key words:  cations    dual ionically crosslinked    hydrogels    high strength    shape memory
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TB332  
基金资助: 国家自然科学基金(51273059);武汉市科学技术局应用基础前沿项目(2019010701011397)
通讯作者:  li_xf@mail.hbut.edu.cn   
作者简介:  李学锋,博士,现任湖北工业大学材料与化学工程学院教授,博士研究生导师,一直从事高分子材料领域的教学与研究。作为项目负责人完成两项国家自然科学基金,多项省部级及企业合作科研项目并取得了一定的创新成果。近年来,以第一作者或通讯作者身份在国内、外权威期刊共发表学术论文70余篇,其中被国际三大索引收录40余篇,申报国家发明专利21项(已授权15项),并担任多个学术期刊的审稿人。以主要获奖者分别获得湖北省科技进步一等奖一项,武汉市科技进步二等奖一项,湖北省教学成果奖一等奖一项。
引用本文:    
李学锋, 王慧, 龙世军, 黄以万, 李海燕. 离子双交联海藻酸钠/聚(丙烯酰胺-co-丙烯酸)高强度水凝胶的研究[J]. 材料导报, 2020, 34(16): 16149-16154.
LI Xuefeng, WANG Hui, LONG Shijun, HUANG Yiwan, LI Haiyan. Study on Dual Ionically Crosslinked Sodium Alginate/Poly(acrylamide-co-acrylic acid) High Strength Hydrogel. Materials Reports, 2020, 34(16): 16149-16154.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010031  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16149
1 Naficy S, Brown H R, Razal J M, et al. Australian Journal of Chemistry, 2011, 64(8), 1007.
2 Adams M A, Kerin A J, Wisnom M R, et al. Connective Tissue Research, 1998, 39, 245.
3 Zhao Y, Nakajima T, Yang J J, et al. Advanced Materials, 2014, 26, 436.
4 Ambrosio L, Santis R D, Nicolais L, et al. Proceedings of the Institution of Mechanical Engineers Part H, 1998, 212(2), 93.
5 Nakajima T, Sato H, Zhao Y, et al. Advanced Functional Materials, 2012, 22(21), 4426.
6 Wang J, Wei J, Su S J, et al. Materials Science, 2015, 50(16), 5458.
7 Matsuda T, Nakajima T, Fukuda Y, et al. Macromolecules, 2016, 49, 1865.
8 Haraguchi K. Current Opinion Solid State & Materials Science, 2007, 11, 47.
9 Okumura Y, Ito K, et al. Advanced Materials, 2001,13, 485.
10 Huang T, Xu H G, Jiao K X, et al. Advanced Materials, 2007, 19, 1622.
11 Gong J P, Katsuyama Y, Kurokawa T, et al. Advanced Materials, 2003, 15, 1155.
12 Zheng S, Ding H, Qian J, et al. Macromolecules, 2016, 49 (24), 9637.
13 Chen Q, Yan X, Zhu L, et al. Chemical Materials, 2016, 28 (16), 5710.
14 Li X F, Yang Q, Long S J, et al. Acta Materiae Compositae Sinica, 2017, 34(7),1416 (in Chinese).
李学锋,杨倩,龙世军,等. 复合材料学报,2017, 34(7), 1416.
15 Holten-andersen N, Harrington M J, Birekedal H, et al. Proceedings of the Natlional Academy of Sciences of the United States, 2011, 108(7), 2651.
[1] 张文娟, 费玉龙, 王有良, 张波波, 马晓凯. 磁性聚苯胺复合材料对工业废水中重金属吸附的研究进展[J]. 材料导报, 2020, 34(9): 9012-9018.
[2] 周宇, 钱丽华, 刘天宇, 张泉, 吕知清. 冷轧板条马氏体组织与力学性能研究[J]. 材料导报, 2020, 34(8): 8154-8158.
[3] 曹新鑫, 李福昌. 石墨烯气凝胶的废水吸附性能研究进展[J]. 材料导报, 2020, 34(7): 7020-7025.
[4] 瑚佩, 姜勇刚, 张忠明, 冯军宗, 李良军, 冯坚. 耐高温、高强度隔热复合材料研究进展[J]. 材料导报, 2020, 34(7): 7082-7090.
[5] 孙晓霞, 鲍艺, 彭黔荣, 陈亭羽, 卢小鸾, 杨敏. 角蛋白生物材料在创伤愈合中的应用研究进展[J]. 材料导报, 2020, 34(7): 7161-7167.
[6] 蔺宏涛, 孟强, 王怡嵩, 王家毅, 张韵, 江海涛. 旋转速度对高强度钢Q&P980搅拌摩擦焊接头组织与性能的影响[J]. 材料导报, 2020, 34(6): 6126-6131.
[7] 李振团, 柴锋, 罗小兵, 张正延, 杨才福, 苏航. 时效温度对Cu沉淀强化超高强海工钢力学性能的影响[J]. 材料导报, 2020, 34(6): 6132-6137.
[8] 王蓝青, 钟溢健, 陈南春, 解庆林. 溶胶-凝胶法制备离子印迹聚合物及其用于选择性吸附重金属离子的综述[J]. 材料导报, 2020, 34(5): 5016-5022.
[9] 杨珏莹, 陈煜, 赵琳, 张子涵, 杨威, 刘媛, 彭克林, 王雅伦. 基于动态可逆非共价体系的自愈合水凝胶构建方法研究进展[J]. 材料导报, 2020, 34(5): 5133-5141.
[10] 王异彩, 张甜, 李媛. 光聚合PEXS-A水凝胶材料的合成及包埋活细胞的性能[J]. 材料导报, 2020, 34(2): 2169-2173.
[11] 史燕娟, 冯梦梦, 陈光楠, 肖欢, 石贵滨, 曹承然, 何松. SiO2凝胶干水粉体性能研究[J]. 材料导报, 2020, 34(16): 16025-16030.
[12] 黄建成, 丁冬, 李玉婷, 张慧芳, 刘海宁, 胡耀强, 叶秀深, 吴志坚. 松针基碳电极的制备及对碱/碱土金属离子的电吸附[J]. 材料导报, 2020, 34(12): 12015-12019.
[13] 胡文宇, 王笑乙, 袁欢, 刘禹彤, 陈雨, 张秋平, 张嘉羲, 罗凯怡, 李靖, 徐明. Ag沉积CuO-ZnO纳米复合材料的溶胶-凝胶合成及光催化性能研究[J]. 材料导报, 2020, 34(10): 10018-10023.
[14] 兰军, 刘乔, 陈重一. 一步法制备高强度自修复聚丙烯酸/聚烯丙基胺聚电解质水凝胶及其性能研究[J]. 材料导报, 2019, 33(8): 1412-1415.
[15] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed