Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 189-192    
  无机非金属及其复合材料 |
纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响
姜宽, 戚承志, 崔英洁, 李太行, 卢真辉
北京建筑大学,北京未来城市设计高精尖中心,2011 节能减排协同创新中心,北京 100044
Effects of Several Factors Such as Cellulose on the Properties of PolyethyleneFiber Reinforced Pervious Concrete
JIANG Kuan, QI Chengzhi, CUI Yingjie, LI Taihang, LU Zhenhui
2011 Energy Conservation and Emission reduction Collaborative Innovation Center, Beijing Future Urban Design High-Tech Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 3401KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 节能减排协同创新中心,北京 100044本实验研究了不同仿钢纤维掺量(0%、0.2%、0.4%、0.6%)对透水混凝土抗压强度和透水系数的影响,并分析了骨料粒径、细骨料、纤维素等因素对仿钢纤维增强透水混凝土抗压强度和透水性能的影响。研究表明:仿钢纤维能够在一定程度上提高透水混凝土的早期强度;随仿钢纤维掺量的增加,透水混凝土28 d的抗压强度呈先上升后下降趋势,即存在最优掺量;当仿钢纤维掺量增加时,透水混凝土的透水能力先下降后上升;透水混凝土的抗压强度随骨料粒径的增大而降低,透水系数随骨料粒径的增大而明显增大;细骨料会使透水混凝土的早期抗压强度降低,但会提高透水混凝土28 d的抗压强度;随着细骨料取代量的增加,透水混凝土的透水系数先增大后减小;透水混凝土的抗压强度随纤维素掺量的增加而降低,透水系数随纤维素掺量的增加而增大。本研究可为实际透水混凝土施工过程中外掺料的选择提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜宽
戚承志
崔英洁
李太行
卢真辉
关键词:  透水混凝土  仿钢纤维  抗压强度  透水系数  骨料粒径  细骨料  纤维素    
Abstract: In this experiment, the effects of different steel fiber content (0%, 0.2%, 0.4%, 0.6%) on the compressive strength and permeability coefficient of pervious concrete were studied. Furthermore, the influence of aggregate size, fine aggregate and cellulose on the compressive strength and permeability coefficient of polyethylene fiber reinforced pervious concrete were researched. The results show that the polyethylene fiber can partly improve the early compressive strength of pervious concrete. With the increase of the content of the polyethylene fiber, the compressive strength of pervious concrete in 28 d increases first and then decreases, that is to say, there is an optimal content. The permeability of pervious concrete decreases first and then increases with the increase of the content of polyethylene fiber. The compressive strength of pervious concrete decreases with the increase of aggregate size, and the permeability coefficient increases significantly with the increase of aggregate size. Fine aggregate will reduce the 7 d compressive strength of pervious concrete, but will increase the 28 d compressive strength. With the increase of fine aggregate, the permeability coefficient of pervious concrete increases first and then decreases. The compressive strength of pervious concrete decreases with the increase of cellulose content, and the permeability coefficient increases with the increase of cellulose content. The research can provide a reference for the selection of admixtures in the practical construction process of pervious concrete.
Key words:  pervious concrete    polyethylene fiber    compressive strength    permeability coefficient    aggregate size    fine aggregate    cellulose
                    发布日期:  2020-07-01
ZTFLH:  TU502  
基金资助: 国家重点基础研究发展计划(2015CB057805)
作者简介:  姜宽,北京建筑大学硕士研究生,主要从事混凝土材料和岩石动力学方面的学习和研究;戚承志,北京建筑大学教授,博士研究生导师,“长江学者”特聘教授。主要从事岩石力学、防灾减灾工程等方面研究,负责完成国家级科研项目10余项。
引用本文:    
姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
JIANG Kuan, QI Chengzhi, CUI Yingjie, LI Taihang, LU Zhenhui. Effects of Several Factors Such as Cellulose on the Properties of PolyethyleneFiber Reinforced Pervious Concrete. Materials Reports, 2020, 34(Z1): 189-192.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/189
1 Pratt C J. Water Science & Technology,1999,39(5),145.
2 Nader G, Shivaji D. Journal of Transportation Engineering,1995,3,283.
3 Kim Y J, Gaddafi A, Yoshitake I. Materials & design,2016,100,110.
4 Yu F, Sun D, Hu M, et al. Construction & Building Materials,2019,200(10),687.
5 Grubesa, Ivanka, Netinger, et al. Construction & Building Materials,2018,169,252.
6 刘霞,王加荣,吴冬,等.混凝土,2008(10),120.
7 徐仁崇,桂苗苗,刘君秀,等.混凝土,2011(8),109.
8 石莹,杨善顺,徐仁崇.商品混凝土,2017(5),47.
9 蒋正武,孙振平,王培铭.建筑材料学报,2005(5),513.
10 范伟.材料导报,2017,31(S2),413.
11 袁汉卿,蒋友宝,崔玉理,等.材料导报,2018,32(S2),466.
12 王奕仁,王栋民.材料导报:综述篇,2017,31(9),98.
13 王苏,陶毓先.安徽建筑,2016,23(4),280.
14 林海威,谢建斌,吕龙,等.混凝土与水泥制品,2020(3),50.
[1] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[2] 陈镇杉, 吴玉生, 彭鹏飞, 黄舟, 陈梅红, 蔡博群. 氟铝络合物对硫酸铝型速凝剂性能的影响[J]. 材料导报, 2020, 34(Z1): 178-180.
[3] 卢喆, 冯振刚, 姚冬冬, 纪鸿儒, 秦卫军, 于丽梅. 超高性能混凝土工作性与强度影响因素分析[J]. 材料导报, 2020, 34(Z1): 203-208.
[4] 欧孝夺, 彭远胜, 莫鹏, 江杰. 掺铝土尾矿泡沫轻质土的物理力学及水力特性研究[J]. 材料导报, 2020, 34(Z1): 241-245.
[5] 江凯, 周雪松. 细菌纤维素复合材料高值化利用的研究进展[J]. 材料导报, 2020, 34(9): 9164-9169.
[6] 申嘉荣, 徐千军. 高温对混凝土孔隙结构改变和抗压强度降低作用的规律研究[J]. 材料导报, 2020, 34(2): 2046-2051.
[7] 同帜, 张健需, 孙小娟, 杨博文, 黄开佩. 基于天然黄土低温烧制的多孔管状陶瓷基体及其表征[J]. 材料导报, 2020, 34(12): 12050-12056.
[8] 赵燕茹, 刘芳芳, 王磊, 郭子麟. 单面盐冻条件下基于孔结构的玄武岩纤维混凝土抗压强度模型[J]. 材料导报, 2020, 34(12): 12064-12069.
[9] 董金美, 肖学英, 李颖, 文静, 郑卫新, 常成功, 余红发. 原料质量配比对盐湖磷酸钾镁水泥性能和微观结构的影响[J]. 材料导报, 2020, 34(10): 10041-10045.
[10] 刘婉婉, 马昆林, 张传芹, 龙广成, 谢友均, 边伟. 透水混凝土对城市雨水径流中污染物净化原理的研究进展[J]. 材料导报, 2019, 33(Z2): 293-299.
[11] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[12] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[13] 高欣, 韩全青, 张恒, 陈克利. 纤维素羧酸钠基半互穿高吸水凝胶的温控溶胀效果[J]. 材料导报, 2019, 33(8): 1416-1421.
[14] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[15] 曾路, 何牟, 张明华, 胡婷婷, 王淑萍, 彭小芹. 地聚物基透水混凝土的制备与性能[J]. 材料导报, 2019, 33(24): 4086-4091.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed