Please wait a minute...
材料导报  2020, Vol. 34 Issue (12): 12020-12024    https://doi.org/10.11896/cldb.19060040
  无机非金属及其复合材料 |
射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响
罗国平1, 张漫虹1, 梁铨斌2, 陈冬1, 陈星源1, 李天乐1, 朱伟玲1
1 广东石油化工学院理学院,茂名 525000
2 华南理工大学发光材料与器件国家重点实验室,广州 510640
Effect of Radio Frequency Power and Working Pressure on Characteristics of Ga and Al Co-doped ZnO Thin Films
LUO Guoping1, ZHANG Manhong1, LIANG Quanbin2, CHEN Dong1, CHEN Xingyuan1, LI Tianle1, ZHU Weiling1
1 School of Science, Guangdong University of Petrochemical Technology, Maoming 525000, China
2 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
下载:  全 文 ( PDF ) ( 3897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 室温下采用射频(RF)磁控溅射在玻璃衬底上制备镓铝共掺杂氧化锌 (GAZO) 薄膜。采用X射线衍射仪、紫外-可见-近红外分光光度计、四探针测试仪和紫外光电子能谱等表征方法研究射频功率和工作压强与薄膜结构、光学和电学性能之间的关联。结果表明:不同条件下制备的GAZO薄膜均具有六方纤锌矿晶体结构,沿垂直衬底的 (002) 方向择优取向,在可见光波段 (400~700 nm) 的平均透射率均高于90%;在射频功率和工作压强分别为200 W和0.20 Pa条件下制备的GAZO薄膜具有最低的电阻率 (1.40×10-3 Ω·cm) 和最高的品质因子 (8.10×10-3 Ω-1)。GAZO薄膜优良的光电性能使其有很大潜力作为透明电极应用于光电器件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗国平
张漫虹
梁铨斌
陈冬
陈星源
李天乐
朱伟玲
关键词:  射频功率  透明电极  ZnO薄膜  溅射沉积  透射率  电阻率    
Abstract: Gallium and aluminum co-doped zinc oxide (GAZO) thin films with high transparency and conductivity were successfully deposited on glass substrates by radio frequency (RF) magnetron sputtering at room temperature. The effects of RF power and working pressure on the structural, optical and electrical characteristics of GAZO thin films were investigated by X-ray diffraction (XRD), UV-Vis-NIR spectrophotometer, four-point-probe setup and ultraviolet photoelectron spectroscopy (UPS). The results show that all GAZO thin films have a hexagonal wurtzite crystal structure with a preferential orientation along (002) direction normal to the substrate, and their average visible transmittance (400—700 nm) are above 90%. The thin films deposited with 200 W and 0.20 Pa yield the lowest resistivity of 1.40×10-3 Ω·cm and highest figure of merit (FOM) of 8.10×10-3 Ω-1. The optical and electrical characteristics of the deposited GAZO thin films indicate that they have potential applications in optoelectronic devices as transparent electrode.
Key words:  radio frequency power    transparent electrodes    ZnO thin films    sputtering deposition    transparency    electric resistivity
                    发布日期:  2020-05-29
ZTFLH:  TB304  
基金资助: 广东省教育厅青年创新人才 (680067);茂名市科技计划 (mm2017000007; 2017309);广东石油化工学院科研基金 (2017rc20)
通讯作者:  tianle_li@gdupt.edu.cn   
作者简介:  罗国平,广东石油化工学院讲师,2016年6月,在华南理工大学获得材料物理与化学专业工学博士学位,2016年7月加入广东石油化工学院。在国内外学术期刊上发表论文10余篇。主要研究方向为光电材料与器件。
李天乐,理学博士,广东石油化工学院理学院应用物理系主任。主要从事有机光电子以及器件物理等方面的研究,先后发表论文20多篇。
引用本文:    
罗国平, 张漫虹, 梁铨斌, 陈冬, 陈星源, 李天乐, 朱伟玲. 射频功率和工作压强对Ga、Al共掺杂ZnO薄膜性能的影响[J]. 材料导报, 2020, 34(12): 12020-12024.
LUO Guoping, ZHANG Manhong, LIANG Quanbin, CHEN Dong, CHEN Xingyuan, LI Tianle, ZHU Weiling. Effect of Radio Frequency Power and Working Pressure on Characteristics of Ga and Al Co-doped ZnO Thin Films. Materials Reports, 2020, 34(12): 12020-12024.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060040  或          http://www.mater-rep.com/CN/Y2020/V34/I12/12020
1 Hofmann A I, Cloutet E, Hadziioannou G. Advanced Electronic Materials,2018,4(10),1700412.
2 Pan L, Li Y, He X, et al. Micronanoelectronic Technology,2018,55(8),551(in Chinese).
潘丽君,李阳,何鑫,等.微纳电子技术,2018,55(8),551.
3 Raniero L, Ferreira I, Pimentel A, et al. Thin Solid Films,2006,511,295.
4 Minami T, Miyata T. Thin Solid Films,2008,517(4),1474.
5 Hong K, Lee J L. Electronic Materials Letters,2011,7(2),77.
6 Shinde S S, Shinde P S, Oh Y W, et al. Applied Surface Science,2012,258(24),9969.
7 Mani G K, Rayappan J B B. Materials Letters,2015,158,373.
8 Myong S Y, Baik S J, Lee C H, et al. Japanese Journal of Applied Phy-sics,1997,36(8B),L1078.
9 Gahtar A, Benramache S, Benhaoua B, et al. Journal of Semiconductors,2013,34(7),073002.
10 Assuncao V, Fortunato E, Marques A, et al. Thin Solid Films,2003,427(1-2),401.
11 Liu Z F, Shan F K, Li Y X, et al. Journal of Crystal Growth,2003,259(1-2),130.
12 Amari R, Mahroug A, Boukhari A, et al. Chinese Physics Letters,2018,35(1),016801.
13 Waykar R, Amit P, Kulkarni R, et al. Journal of Semiconductors,2016,37(4),043001.
14 Pham D P, Nguyen H T, Phan B T, et al. Thin Solid Films,2015,583,201.
15 Gonçalves G, Elangovan E, Barquinha P, et al. Thin Solid Films,2007,515(24),8562.
16 Liu H, Liu Y F, Xiong P P, et al. IEEE Transactions on Nanotechnology,2017,16(4),634.
17 Ayachi B, Aviles T, Vilcot J P, et al. Applied Surface Science,2016,366,53.
18 Pugalenthi A S, Balasundaraprabhu R, Gunasekaran V, et al. Materials Science in Semiconductor Processing,2015,29,176.
19 Chin H S, Chao L S, Wu C C. Materials Research Bulletin,2016,79,90.
20 Dejam L, Elahi S M, Nazari H H, et al. Journal of Materials Science: Materials in Electronics,2016,27(1),685.
21 Lee C, Lim K, Song J. Solar Energy Materials & Solar Cells,1996,43(1),37.
22 Kim J K, Yun S J, Lee J M, et al. Current Applied Physics,2010,10(3),S451.
23 Sans J A, Sánchez-Royo J F, Segura A, et al. Physical Review B,2009,79(19),195105.
24 Zhao J L, Sun X W, Ryu H, et al. Optical Materials,2011,33(6),768.
25 Kim K H, Choi H W, Kim K H. Journal of Ceramic Processing Research,2013,14(2),194.
26 Ebrahimifard R, Golobostanfard M R, Abdizadeh H. Applied Surface Science,2014,290,252.
27 Chang S C. Nanoscale Research Letters,2014,9(1),562.
28 Muchuweni E, Sathiaraj T S, Nyakotyo H. Materials Research Bulletin,2017,95,123.
29 Muchuweni E, Sathiaraj T S, Nyakotyo H. Ceramics International,2016,42(15),17706.
30 Zhu K, Yang Y, Song W. Materials Letters,2015,145,279.
31 Sahoo S K, Gupta C A, Singh U P. Journal of Materials Science: Mate-rials in Electronics,2016,27(7),7161.
32 Cheng Z M, Sun Y H, Fang L, et al. Journal of China Three Gorges University (Natural Sciences),2018,40(3),91(in Chinese).
程志敏,孙宜华,方亮,等.三峡大学学报(自然科学版),2018,40(3),91.
33 Mahdhi H, Ayadi Z B, Alaya S, et al. Superlattices and Microstructures,2014,72,60.
34 Pugalenthi A S, Balasundaraprabhu R, Gunasekaran V, et al. Materials Science in Semiconductor Processing,2015,29,176.
35 Qin G P, Zhang H, Ruan H B, et al. Chinese Physics Letters,2019,36(4),047301.
36 Maniv S, Zangvil A. Journal of Applied Physics,1978,49(5),2787.
37 Sahoo S K, Gupta C A, Singh U P. Journal of Materials Science: Mate-rials in Electronics,2016,27(7),7161.
38 Tauc J, Grigorovici R, Vancu A. Physics Status Solidi(b),1966,15(2),627.
39 Gabás M, Díaz-Carrasco P, Agulló-Rueda F, et al. Solar Energy Mate-rials & Solar Cells,2011,95(8),2327.
40 Haacke G. Journal of Applied Physics,1976,47(9),4086.
41 Li H, Ratcliff E L, Sigdel A K, et al. Advanced Functional Materials,2014,24(23),3593.
[1] 郑莉芳, 崔哲, 王兆中, 谢亚杰, 岳丽娜, 陈璇琪. γ辐照作用下GFRP电绝缘性能及其微观结构机理研究[J]. 材料导报, 2020, 34(8): 8179-8183.
[2] 安世崇,黄茜,陈沛润,张力,赵颖,张晓丹. 半透明钙钛矿及叠层太阳电池中的透明电极研究综述[J]. 材料导报, 2020, 34(3): 3069-3079.
[3] 汪国军, 白煜, 胡少杰, 张敏, 王书蓓, 万飞. 退火工艺对磁控溅射生长的Pt薄膜微观结构及电性能的影响[J]. 材料导报, 2019, 33(Z2): 56-60.
[4] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[5] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[6] 周宏明, 王博益, 李荐, 程名辉. CuO掺杂对钇钡铜氧陶瓷电性能的影响[J]. 材料导报, 2019, 33(2): 220-224.
[7] 孙科学, 常月欣, 成谢锋. xBiInO3-(1-x)PbTiO3薄膜的横向压电特性[J]. 材料导报, 2019, 33(14): 2299-2304.
[8] 李迪,陈清明,陈晓慧,李之昱,张亚林,张辉. La0.67Ca0.33-0.5xLixMnO3多晶陶瓷结构及电学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 184-188.
[9] 唐燕, 阮海波, 蒲勇, 张进. 铜纳米线复合透明电极的构筑及应用研究进展[J]. 材料导报, 2018, 32(19): 3423-3434.
[10] 金晨鑫,徐国军,刘烈凯,岳之浩,李晓敏,汤昊,周浪. 硅/石墨负极中硅的体电阻率和掺杂类型对锂离子电池电化学性能的影响*[J]. 材料导报编辑部, 2017, 31(22): 10-14.
[11] 贾兴文, 张新, 马冬, 杨再富, 石从黎, 王智. 导电混凝土的导电性能及影响因素研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 90-97.
[12] 张小红, 杨卿, 张旭晨, 马研, 易筱银. 热氧化ZnS∶Ga制备ZnO∶Ga薄膜及其光致发光性能*[J]. 《材料导报》期刊社, 2017, 31(18): 11-15.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed