Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 264-268    
  无机非金属及其复合材料 |
不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究
邓恺1, 黎红兵2, 李响3, 吴凯3
1 华润水泥技术研发中心,广州 510460
2 四川省建筑科学研究院,成都 610081
3 同济大学材料科学与工程学院,上海 201804
Study on the Performance of Steel Slag and Fly Ash Modified Magnesium Phosphate Cements Under Different Curing Condition
DENG Kai1, LI Hongbin2, LI Xiang3, WU Kai3
1 Technology Research and Development Center, China Resources Cement Holdings Limited, Guangzhou 510460
2 Sichuan Institute of Building Research,Chengdu 610081
3 School of Material Science and Engineering, Tongji University, Shanghai 201804
下载:  全 文 ( PDF ) ( 3978KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用固体废弃物制备磷酸镁水泥不仅可降低其成本,同时也是优化其性能的重要途径。本工作在分析不同M/P对磷酸镁水泥的凝结时间、流动度及力学性能影响的基础上,研究了采用钢渣、粉煤灰配制的磷酸镁水泥在不同养护条件下的性能特征。结果表明:随着M/P的增加,磷酸镁水泥的流动度减小,凝结时间缩短;当M/P=3时,磷酸镁水泥抗压强度达到最高;磷酸镁水泥中掺粉煤灰较掺钢渣具有更好的耐水性;在空气中养护时,提高钢渣、粉煤灰掺量,磷酸镁水泥砂浆收缩量也增大;而在水中养护,钢渣和粉煤灰会降低磷酸镁水泥的收缩,后期甚至出现一定膨胀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓恺
黎红兵
李响
吴凯
关键词:  磷酸镁水泥  钢渣  粉煤灰  耐水性  收缩  膨胀    
Abstract: Utilizing solid waste in preparing magnesium phosphate cement (MPC) can reduce its cost, and it is an important way to improve the performance. In this study, the effect of MgO to phosphate ratio on the setting time, fluidity and mechanical properties of prepared MPC were investigated. The performance of MPC containing steel slag and fly ash under different curing conditions were characterized. Results showed that: with the increase of M/P, the fluidity of MPC decreased and the setting time was shortened significantly. The compressive strength of MPC reached the highest at the M/P of 3. The samples made with steel slag showed poorer water resistance compared with that of fly ash blended system. The shrinkage of MPC mortar was also increased by increasing the amount of steel slag and fly ash when the specimens were cured in the air. However, the incorporation of steel slag and fly ash could reduce the shrinkage as the specimens stored in water, and the samples even exhibit expansion at late age.
Key words:  magnesium phosphate cement    steel slag    fly ash    water resistance    shrinkage    expansion
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TU52  
基金资助: 四川省科技计划资助(2019YFSY0018);“十三五”国家重点研发计划 (2016YFC0700802)
作者简介:  邓恺,高级工程师,华润水泥技术研发中心副总工程师,主要从事特种水泥、装配式建筑生产及研发,曾参与国家“十三五”、“863”等多项课题,出版专著6本,发表论文10余篇。李响,同济大学硕士生,曾获得2016年上海市优秀毕业生。曾参与“十三五”国家重点研发计划,主要研究方向为基于水凝胶制备水泥基复合材料,发表论文一篇。lixiang0428@tongji.edu.cn
引用本文:    
邓恺, 黎红兵, 李响, 吴凯. 不同养护条件下钢渣与粉煤灰改性磷酸镁水泥的性能研究[J]. 材料导报, 2019, 33(z1): 264-268.
DENG Kai, LI Hongbin, LI Xiang, WU Kai. Study on the Performance of Steel Slag and Fly Ash Modified Magnesium Phosphate Cements Under Different Curing Condition. Materials Reports, 2019, 33(z1): 264-268.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/264
1 方圆, 陈兵. 材料导报:研究篇, 2017, 31(12),6.
2 Jeong S, Wagh A.Materials Technology, 2013, 18 (3),162.
3 Fan S, Chen B.Construction & Building Materials, 2014, 65(9),480.
4 Jiang Z, Qian C, Chen Q, et al.Construction & Building Materials, 2017, 157,10.
5 李云涛,晏华,汪宏涛, 等. 材料导报, 2016, 30(S2),474.
6 石军兵, 赖振宇, 卢忠远, 等.功能材料, 2015, 46(2),2060.
7 赵思勰, 晏华, 汪宏涛, 等. 材料导报:综述篇, 2017, 31(12),156.
8 刘凯, 李东旭. 材料导报:综述篇, 2011, 25(7),97.
9 孙佳龙, 黄煜镔, 范英儒, 等.功能材料, 2018, 49(1),1040.
10 Ding Z, Li Z.Cement and Concrete Composites, 2005, 27 (1),11.
11 Shi C, Yang J, Yang N, et al. Cement and Concrete Composites, 2014 53,83.
12 Liao W, Ma H, Sun H, et al. Fuel, 2017, 209,490.
13 陈兵, 吴震, 吴雪萍.武汉理工大学学报, 2011, 33(4),29.
14 Gardner L J, Bernal S A, Walling S A, et al. Cement & Concrete Research, 2015, 74,78.
15 孙道胜, 孙鹏, 王爱国, 等. 材料导报:综述篇, 2013, 27(5),70.
16 赖振宇, 钱觉时, 卢忠远, 等.武汉理工大学学报, 2011, 33(10),16.
17 Zheng D D, Ji T, Wang C Q, et al. Construction & Building Materials, 2016, 106,415.
18 王中良, 刘凯, 张超. 材料导报, 2014, 28(S2),323.
19 Ding Z, Li Z J, Xing F. Key Engineering Materials, 2006, 302-303,543.
20 Lin W, Sun W, Li Z J.Journal of Building Materials, 2010, 13(6),716.
[1] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[2] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[3] 廖宜顺, 沈晴, 徐鹏飞, 廖国胜, 钟侚. 粉煤灰对水泥基材料水化过程电阻率的影响研究[J]. 材料导报, 2019, 33(8): 1335-1339.
[4] 王卫彪, 莫立武, 邓敏. CaSO4·2H2O-C3A压实体水化产生膨胀应力的机理[J]. 材料导报, 2019, 33(8): 1307-1311.
[5] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[6] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[7] 李海南, 马保国, 谭洪波, 梅军鹏. TiO2纳米颗粒对水泥-粉煤灰体系水化硬化及氯离子侵蚀的影响[J]. 材料导报, 2019, 33(4): 630-633.
[8] 王爱国,何懋灿,莫立武,刘开伟,李燕,周莹,孙道胜. 碳化养护钢渣制备建筑材料的研究进展[J]. 材料导报, 2019, 33(17): 2939-2948.
[9] 曹润倬, 周茗如, 周群, 何勇. 超细粉煤灰对超高性能混凝土流变性、力学性能及微观结构的影响[J]. 材料导报, 2019, 33(16): 2684-2689.
[10] 王义超, 余江滔, 魏琳卓, 徐世烺. 超高韧性氯氧镁水泥基复合材料的耐水性能[J]. 材料导报, 2019, 33(16): 2665-2670.
[11] 蒋亮, 李佳欣, 吴婷, 杨车, 尹伟杰, 韩凤兰, 陈宇红. CaO-SiO2-FeO-MgO体系钢渣固相改质过程中的镁铁尖晶石生长机理[J]. 材料导报, 2019, 33(15): 2490-2496.
[12] 王丽丽, 姚建省, 许亮, 杨小薇, 顾国红, 李鑫, 牛书鑫. 熔融石英球形粉对陶瓷型芯高温收缩的影响[J]. 材料导报, 2019, 33(14): 2311-2314.
[13] 苏英, 邱慧琼, 贺行洋, 杨进, 王迎斌, 曾三海, Bohumír Strnadel. 弱碱激发超细粉煤灰水化产物结构分析[J]. 材料导报, 2019, 33(14): 2376-2380.
[14] 吴称意, 李聪, 张旭, 程超, 吴少尉, 周倩, 覃姗姗. 超声辅助合成多孔pH敏感性海藻酸钠水凝胶及其控释行为[J]. 《材料导报》期刊社, 2018, 32(7): 1187-1191.
[15] 沈海洋, 王正洲. 钢渣的表面改性及其在橡胶中应用研究[J]. 材料导报, 2018, 32(6): 1000-1003.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed