Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 269-273    
  无机非金属及其复合材料 |
基于ABAQUS的镶嵌式混凝土加固、修复技术研究
夏娴, 李地红, 高群, 代函函, 于海洋
北京建筑大学土木与交通工程学院,北京100044
Research on Reinforcement and Repair Technology of Mosaic Concrete Based on ABAQUS
XIA Xian, LI Dihong, GAO Qun, DAI Hanhan, YU Haiyang
College of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture,Beijing 100044
下载:  全 文 ( PDF ) ( 6046KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作通过镶嵌方式对开裂混凝土构件进行修复、补强、加固,确保混凝土构件具有不低于开裂前的初始力学性能。对镶嵌件修补的混凝土构件进行抗折试验,并基于材料力学理论对镶嵌件组合进行承载力计算,再通过ABAQUS构建算例的有限元模型观察变形过程中应力的分布情况,研究修补后混凝土的弹塑性工作性能,并进一步优化镶嵌件的工作性能。分析试验、理论数值计算和有限元分析结果表明,本工作研究的镶嵌式加固方式,对含裂缝的水泥制品的抗折性能有明显提高,有限元软件可以有效模拟试验结果,在接下来的研究中可以部分代替试验工作,对镶嵌方式加固混凝土结构技术进行更深入的研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏娴
李地红
高群
代函函
于海洋
关键词:  镶嵌式  混凝土  加固  极限承载力  有限元    
Abstract: In this work, the cracked concrete members are repaired, strengthened and reinforced by the inlaying method to ensure that the concrete members have not less than the initial mechanical properties before the cracking. In this work, the flexural test of the inlaid concrete members is carried out, and the bearing capacity calculation is carried out based on the material mechanics theory. Then the finite element model of the ABAQUS construction example is used to observe the stress distribution during the deformation process, and the repaired concrete is studied. Elastoplastic performance and further optimize the performance of the insert. The results of analytical tests, theoretical numerical calculations and finite element analysis show that the inlaid reinforcement method studied in this work has significantly improved the flexural performance of cracked cement products. The finite element software can be used to replace the experimental work in the next study,and inlaid reinforced concrete structure technology should be further studied.
Key words:  inlay    concrete    strengthening    ultimate bearing capacity    finite element
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  TU528  
作者简介:  夏娴,2017年6月毕业于徐州工程学院,获工学学士学位。现为北京建筑大学土木与交通学院硕士研究生,在李地红教授的指导下进行研究。目前主要研究领域为结构上镶嵌式修复补强加固混凝土。李地红,1998年于哈尔滨建筑大学获得博士学位。2000—2001年作为访问学者在日本东京大学从事舣装材料结构研究与船舶材料评价。李地红教授多年来一直从事聚合物基复合材料的教学、科研工作,主要研究聚合物基复合材料结构分析、结构设计、结构与工艺一体化设计。近5年承担11项科研项目,总经费384万元,任3项项目负责人,经费209万元,国家重大专项专题两项,经费187万元。任职以来,发表学术论文43篇,获国家发明专利9项。近5年发表学术论文21篇,其中SCI收录4篇,EI收录9篇。核心以上期刊7篇,获国家发明专利4项。lidihong@bucea.edu.cn
引用本文:    
夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
XIA Xian, LI Dihong, GAO Qun, DAI Hanhan, YU Haiyang. Research on Reinforcement and Repair Technology of Mosaic Concrete Based on ABAQUS. Materials Reports, 2019, 33(z1): 269-273.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/269
1 Luo J, Chen X, Crump J, et al. Construction & Building Materials, 2018, 164,275.
2 Bang Yeon Lee, Yun Yong Kim, Seong-Tae Yi, et al. Structure & Infrastructure Engineering, 2013, 9(6),567.
3 Yan Z G. Journal of Hebei Institute of Architecture & Civil Engineering, 2011,29(1),28.
4 Zhu Z , German S , Brilakis I. Automation in Construction, 2011, 20(7),874.
5 Sun M, Liu Q, Li Z Q, et al. Cement & Concrete Research, 2000, 30(10),1593.
6 Ogura N, Yatsumoto H, Nishida T, et al. Construction & Building Materials, 2018, 177,247.
7 Chen L H. Supervision Test & Cost of Construction, 2017,10(4), 27.
8 鲁晓玲. 山西建筑,2016,42(14),93.
9 周锦福,颜贞明,郑庆明,等. 山西建筑,2017,43(23),93.
10 Bian T, Guan Z, Liu F. Acta Materiae Compositae Sinica, 2017,34(2),430.
11 乔宏霞,巩位,王鹏辉,等. 西南交通大学学报,2017,52(02),247..
12 Wang X, Su Y, Yan L. Journal of Constructional Steel Research, 2014,101(10),242.
13 Mansour F R, Bakar S A, Ibrahim I S, et al. Construction & Building Materials, 2015, 75,112.
14 Mohammadi T, Wan B, Harries K. Journal of Antimicrobial Chemotherapy, 2013, 53(3),544.
15 Yin C, Min Y, Le H, et al. Engineering Structures, 2017, 148, 23.
[1] 王储, 周珏辉, 周添, 陈亦伦, 宋荟荟. 大功率电磁波照射下超材料多物理场耦合行为[J]. 材料导报, 2019, 33(z1): 84-88.
[2] 崔海坡, 张伟东, 宋成利, 王成勇, 张涛, 张春晓, 程千莉. 微创血管夹不同齿型对血管力学性能的影响[J]. 材料导报, 2019, 33(z1): 432-435.
[3] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[4] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[5] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[6] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[7] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[8] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[9] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[10] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[11] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[12] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[13] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[14] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[15] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed