Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 694-698    https://doi.org/10.11896/cldb.201904025
  金属与金属基复合材料 |
一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析
高志玉1,盛凯1,康宇1,张旭1,潘涛2
1 辽宁工程技术大学材料科学与工程学院,阜新 123099;
2 钢铁研究总院工程用钢研究所,北京 100081
Hot Deformation Constitutive Analysis of a Novel Ni-Cr-Mo-B Steel with High Hardenability
GAO Zhiyu1, SHENG Kai1, KANG Yu1, ZHANG Xu1, PAN Tao2
1 College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123099;
2 Division of Engineering Steel, Central Iron and Steel Research Institute, Beijing 100081
下载:  全 文 ( PDF ) ( 3366KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 基于Gleeble单道次热压缩实验并结合OM表征手段及回归方法,研究了一种新型高淬透性Ni-Cr-Mo-B特厚板钢在850~1 150 ℃和0.01~10 s-1热变形参数下的热变形行为。结果表明,Ni-Cr-Mo-B钢在热变形过程中流变应力随变形温度的升高而减小,随应变速率的增加而增大。建立的典型应变补偿Arrhenius型本构方程可用于粗略预测Ni-Cr-Mo-B钢的流变行为。考虑到应变速率、变形热对变形过程的影响,提出修正应变补偿Arrhenius型本构方程,其统计学参量Rc=0.994 68、AARE=3.69%、RMSE=6.44 MPa、NMBE=1.25%,相对误差大部分(94.87%)在±10%之内,表明该方程具有极高的流变应力预测精度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高志玉
盛凯
康宇
张旭
潘涛
关键词:  Ni-Cr-Mo-B钢  特厚板  热变形  本构方程    
Abstract: Hot deformation behavior of a novel Ni-Cr-Mo-B ultra-heavy plate steel with high hardenability at 850-1 150 ℃ and the strain rates of 0.01 to 10 s-1 was studied by means of single pass Gleeble hot compression tests, optical microscopy and regression method. The results revealed that the rheological stress of Ni-Cr-Mo-B steel decreased with the increasing deformation temperature and increased with the rising strain rate du-ring hot compression. The classic strain-compensation Arrhenius-type constitutive equation established in this study could roughly predict the rheological behavior of Ni-Cr-Mo-B steel. Furthermore, a revised strain-compensation Arrhenius-type constitutive equation was proposed by taking the influence of strain rate and deformation heat on the deformation process into consideration. The statistical parameters of the revised equation were as follow, Rc=0.994 68, AARE=3.69%, RMSE=6.44 MPa, NMBE=1.25%, -10%≤δ≤10%, which means that the revised equation could predict the rheological stress more accurately.
Key words:  Ni-Cr-Mo-B steel    ultra-heavy plate    hot deformation    constitutive equation
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TG142.3  
基金资助: 国家科技支撑计划项目(2011BAE25B01);辽宁省博士科研启动基金项目(20170520151);省级大学生创新创业训练计划项目 (201710147000084)
作者简介:  高志玉,辽宁工程技术大学,讲师。2016年1月毕业于北京科技大学,材料科学与工程博士。主要从事金属材料强韧化、材料基因计算与集成计算材料工程领域的研究。
引用本文:    
高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
GAO Zhiyu, SHENG Kai, KANG Yu, ZHANG Xu, PAN Tao. Hot Deformation Constitutive Analysis of a Novel Ni-Cr-Mo-B Steel with High Hardenability. Materials Reports, 2019, 33(4): 694-698.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904025  或          http://www.mater-rep.com/CN/Y2019/V33/I4/694
1 Wang X Y, Pan T, Wang H, et al. Acta Metallurgica Sinica,2012,48(4),401(in Chinese).王小勇,潘涛,王华,等.金属学报,2012,48(4),401.2 Gao Z Y, Pan T, Wang Z, et al. Chinese Journal of Engineering,2015,37(4),447(in Chinese).高志玉,潘涛,王卓,等.工程科学学报,2015,37(4),447.3 Pan T, Wang X Y, Su H, et al. Acta Metallurgica Sinica,2014,50(4),431(in Chinese).潘涛,王小勇,苏航,等.金属学报,2014,50(4),431.4 Wei H L, Liu G Q, Xiao X, et al. Acta Metallurgica Sinica,2013,49(6),731(in Chinese).魏海莲,刘国权,肖翔,等.金属学报,2013,49(6),731.5 Liang J X, Yong Q L, Zhang L, et al. Iron and Steel,2016,51(9),82(in Chinese).梁剑雄,雍岐龙,张良,等.钢铁,2016,51(9),82.6 Samantaray D, Mandal S, Bhaduri A K, et al. Materials Science and Engineering: A,2011,528,1937.7 Gao Z Y, Pan T, Wang Z, et al. Journal of Iron and Steel Research, International,2015,22(9),818.8 Han J, Li L, Yang J W, et al. Journal of Iron and Steel Research,2015,27(4),56(in Chinese).韩娇,李莉,杨金文,等.钢铁研究学报,2015,27(4),56.9 Mirzadeh H, Cabrera J M, Najafizadeh A. Acta Materialia,2011,59(16),6441.10 Sabokpa O, Zarei-Hanzaki A, Abedi H R, et al. Materials & Design,2012,39,390.11 Gong Q J, Liang Y L, Yang M, et al. Iron and Steel,2017,52(7),76(in Chinese).龚乾江,梁益龙,杨明,等.钢铁,2017,52(7),76.12 Han Y, Qiao G J, Sun J P, et al. Computational Materials Science,2013,67,93.13 Mandal S, Sivaprasad P V, Venugopal S, et al. Applied Soft Computing,2009,9(1),237.14 Zener C, Hollomon J H. Journal of Applied Physics,1944,15(1),22.15 Luo R, Cheng X N, Zheng Y, et al. Materials Review B: Research Papers,2017,31(9),136(in Chinese).罗锐,程晓农,郑琦,等.材料导报:研究篇,2017,31(9),136.16 Sun Q, Chen L. Materials Review B: Research Papers,2017,31(11),90(in Chinese).孙倩,陈冷.材料导报:研究篇,2017,31(11),90.17 Li H Y, Li Y H, Wang X F, et al. Materials & Design,2013,49,493.18 Sellars C M, Mctegart W J. Acta Metallurgica,1966,14(9),1136.19 He A, Chen L, Hu S, et al. Materials & Design,2013,46,54.20 Mirzadeh H, Najafizadeh A, Moazeny M. Metallurgical and Materials Transactions A,2009,40(12),2950.21 Xiao X, Liu G Q, Hu B F, et al. Computational Materials Science,2012,62,227.22 Mcqueen H J, Yue S, Ryan N D, et al. Journal of Materials Processing Technology,1995,53(1-2),293.23 Zhao Z Y, Sun M Y, Sun J L. Materials Review B: Research Papers,2017,31(4),149(in Chinese).赵正阳,孙明月,孙建亮.材料导报:研究篇,2017,31(4),149.24 Han J, Sun J P, Han Y, et al. Acta Metallurgica Sinica(English Letters),2017,11,1080.25 Liu J W, Zhao Z, Lu S. Catalysis Today, DOI:10.1016/j.msea.2017.12.028.26 Samantaray D, Mandal S, Bhaduri A K. Computational Materials Science,2009,47,568.27 Ji G L, Li L, Qin F L, et al. Journal of Alloys and Compounds,2017,695,2389.28 Cai J, Li F G, Liu T Y, et al. Materials & Design,2011,32,1144.29 Zou D N, Wu K, Han Y, et al. Materials & Design,2013,51,975.30 Rezaei Ashtiani H, Parsa M H, Bisadi H. Materials Science and Engineering: A,2012,545,61.31 Peng X N, Guo H Z, Shi Z F, et al. Materials & Design,2013,50,198.32 Chun M S, Biglou J, Lenard J G, et al. Journal of Materials Processing Technology,1999,86(1-3),245.33 Ma X, Zeng W D, Tian F, et al. Materials Science and Engineering: A,2012,545,132.34 Phaniraj M P, Lahiri A K. Journal of Materials Processing Technology,2003,141(2),219.35 Li H Y, Wei D D, Li Y H, et al. Materials & Design,2012,35,557.36 Li H Y, Hu J D, Wei D D, et al. Materials & Design, 2012,42,192.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[3] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[4] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[5] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[6] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[7] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[8] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[9] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[10] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[11] 戴青松, 欧世声, 邓运来, 付平, 张佳琪. 5083铝合金的热变形组织演变及晶粒度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 143-146.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed