Please wait a minute...
材料导报  2018, Vol. 32 Issue (22): 3936-3940    https://doi.org/10.11896/j.issn.1005-023X.2018.22.017
  金属与金属基复合材料 |
厚板铝合金搅拌摩擦焊接头的冲击性能
张忠科, 张剑飞, 于洋, 王希靖
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
Impact Performance of Friction Stir Welded Joints of Thick Plate Aluminum Alloy
ZHANG Zhongke, ZHANG Jianfei, YU Yang, WANG Xijing
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 5308KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用搅拌摩擦焊对厚度为30 mm的2A12铝合金板材进行对焊连接,分析了接头不同厚度处的微观组织与冲击性能。结果表明:随着热输入量的减少,接头上层的晶粒相比于下层出现了粗化现象,导致接头上层区域的冲击韧性低于下层。焊核区晶粒最为细小,热机影响区次之,热影响区晶粒最为粗大;焊核区的冲击韧性高于热影响区,热机影响区由于存在微型裂纹,所以冲击韧性最低。焊核区上层的晶粒尺寸小于热机影响区下层的晶粒尺寸,但焊核区上层的冲击韧性低于热机影响区下层的冲击韧性,这是由于焊核区所含的Al2CuMg脆性第二相的数量较多。焊接接头冲击韧性的变化不仅与焊缝不同区域的微观组织变化有关,还与该区域的第二相数量有关。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张忠科
张剑飞
于洋
王希靖
关键词:  搅拌摩擦焊  2A12铝合金  厚板  显微组织  冲击韧性    
Abstract: Butt welding of 2A12 aluminum alloy with thickness of 30 mm was conducted by friction stir welding, the microstructure and impact performance of the joints were analyzed at different thickness positions. The results showed that with the decrease of the heat input, the grain size in the upper part of the weld nugget zone (NZ) was coarsening compared to the lower part of NZ. Causing the impact toughness in the upper area of the joint lower than that in the bottom. The grain size was the smallest in the NZ, a little bit coarser in the thermo-mechanically affected zone (TMAZ), and the coarsest in the heat affected zone (HAZ). There existed difference in impact toughness of the welded joint. The impact toughness of NZ was higher than that of HAZ, The impact toughness of TMAZ was the lowest due to the existence of micro cracks. The grain size of the upper part of NZ was smaller than that of the bottom part of TMAZ, but the impact toughness of these two parts was just the opposite, because the number of the second phase (Al2CuMg) was larger in NZ. In conclusion the change of impact toughness of welded joints was not only related to the microstructure variation, but also the amount of the second phase in the region.
Key words:  friction stir welding    2A12 aluminum alloy    thick plate    microstructure    impact toughness
               出版日期:  2018-11-25      发布日期:  2018-12-21
ZTFLH:  TG457.1  
基金资助: 国家自然科学基金(10902047);航空科学基金(201611U2001)
作者简介:  张忠科:男,1978年生,副教授,博士,研究方向为焊接设备及其自动化,新型连接技术 E-mail:zhangzke@lut.cn
引用本文:    
张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
ZHANG Zhongke, ZHANG Jianfei, YU Yang, WANG Xijing. Impact Performance of Friction Stir Welded Joints of Thick Plate Aluminum Alloy. Materials Reports, 2018, 32(22): 3936-3940.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.22.017  或          http://www.mater-rep.com/CN/Y2018/V32/I22/3936
1 Wang H, Qi W, Deng N, et al. Microstructure and properties of friction stir welding 6061 aluminium alloy joint[J]. Chinese Journal of Rare Metals,2010,34(5):638(in Chinese).
王海艳,戚文军,农登,等.6061铝合金搅拌摩擦焊接头组织与性能研究[J].稀有金属,2010,34(5):638.
2 Shabestari S G, Gholizadeh R. Investigation on the microstructure and mechanical properties of new Al-Si piston alloys [J]. Advanced Materials Research,2012,445:289.
3 Ma Z, Zhao W, Lu Z. Impact of texture and microstructure on in-plane anisotropy of ultra-high strength aluminium alloy [J]. Journal of Aeronautical Materials,2015,35(3):1.
4 Gupta R K, Das H, Pal T K. Influence of processing parameters on induced energy, mechanical and corrosion properties of FSW butt joint of 7475 AA[J]. Journal of Materials Engineering & Perfor-mance,2012,21(8):1645.
5 Moghadam D G, Farhangdoost K, Nejad R M. Microstructure and residual stress distributions under the influence of welding speed in friction stir welded 2024 aluminum alloy [J]. Metallurgical & Materials Transactions B,2016,47(3):2048.
6 Çam G. Friction stir welded structural materials: Beyond Al-alloys [J]. International Materials Reviews,2011,56(1):1.
7 He D, Ye S, Wang J. Elimination of lazy S defectin friction stir welded joint of 20 mm-6063 alumimum alloy[J].Transactions of the China Welding Institution,2013,34(12):21(in Chinese).
贺地求,叶绍勇,汪建.20mm-6063铝合金搅拌摩擦焊焊缝S曲线控制[J].焊接学报,2013,34(12):21.
8 Bentley P G, Dawson D G, Prine D W. An evaluation of acoustic emission for the detection of defects produced during fusion welding of mild and stainless steels[J]. Ndt International,1982,15(5):243.
9 Thomas W M, Needham J C, Murch M G, et al. Friction stir wel-ding, international patent application no. PCT/GB92102203 and Great Britain patent application no,9125978.8[P].
10 Sevvel P, Jaiganesh V. Effect of tool shoulder diameter to plate thickness ratio on mechanical properties and nugget zone characteristics during FSW of dissimilar Mg alloys[J]. Transactions of the Indian Institute of Metals,2015,68(1):41.
11 Zhang H, Lin S, Lin W U, et al. Current progress and prospect of friction stir welding[J]. Transactions of the China Welding Institution,2003,24(3):91(in Chinese).
张华,林三宝,吴林,等.搅拌摩擦焊研究进展及前景展望[J].焊接学报,2003,24(3):91.
12 Malard B, Geuser F D, Deschamps A. Microstructure distribution in an AA2050 T34 friction stir weld and its evolution during post-wel-ding heat treatment [J]. Acta Materialia,2015,101:90.
13 çam G, Mistikoglu S. Recent developments in friction stir welding of Al-alloys [J]. Journal of Materials Engineering and Performance,2014,23(6):1936.
14 Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction-stir welding-process, weldment structure and properties [J]. Progress in Materials Science,2008,53(6):980.
15 Babu N, Karunakaran N, Balasubramanian V. A study to estimate the tensile strength of friction stir welded AA 5059 aluminium alloy joints [J]. International Journal of Advanced Manufacturing Technology,2015,79(1-4):1.
16 Yang S Y, Liu D D, Guo D. Study on impact toughness of friction stir welded joint of rare earth magnesium alloy [J].Chinese Rare Earths,2017(2):43(in Chinese).
杨素媛,刘冬冬,郭丹.稀土镁合金搅拌摩擦焊接接头的冲击韧性研究[J].稀土,2017(2):43.
17 Jalal Shawnim R. Charpy impact value of friction stir welded 7020 and 7075 aluminium alloys at different tool rotation and transverse speed[J]. Engineering and Technology Journal,2010,28(15):5048.
18 Chai P, Jian B, Ji Y J, et al. Impact properties of 6063 Al alloy FSW weld[J]. Transactions of the China Welding Institution,2005,26(9):27(in Chinese).
柴鹏,简波,季亚娟,等.6063铝合金搅拌摩擦焊接头冲击断裂分析[J].焊接学报,2005,26(9):27.
19 Wang H F, Zuo D W, Min W, et al. Experimental study on friction stir welded on thick plate of 7022 aluminium alloy[J]. Journal of Functional Materials,2010,41(11):2029(in Chinese).
汪洪峰,左敦稳,王珉,等.厚板7022铝合金搅拌摩擦焊接实验研究[J].功能材料,2010,41(11):2029.
20 K.S, Arora, Pandey, et al. Microstructure evolution during friction stir welding of aluminum alloy AA2219[J]. Journal of Materials Science & Technology,2010,26(8):747.
21 Paglia C S. Environmental cracking and impact investigations after short-term temperature treatments:7050-T7451 friction stir weld[J]. Materials Science Forum,2010,638-642:29.
22 Lee K J, Kim S H. Effects of tool plunge position on mechanical properties of friction-stir-weleded region in A6061-T6/AZ31 dissimilar metals[J]. Transport Theory & Statistical Physics,2012,30(5):22.
23 Yin P, Zhang R, Xiong J, et al. Research advances in temperature field of friction stir welding[J]. Materials Review A:Review Papers,2012,26(9):121(in Chinese).
殷鹏飞,张蓉,熊江涛,等.搅拌摩擦焊温度场研究进展[J].材料导报:综述篇,2012,26(9):121.
24 Aziz S B, Dewan M W, Huggett D J, et al. Impact of friction stir welding (fsw) process parameters on thermal modeling and heat generation of aluminum alloy joints[J]. Acta Metallurgica Sinica,2016,29(9):1.
25 Kunická L, Kocich R, Král P, et al. Effect of strain path on severely deformed aluminium [J]. Materials Letters,2016,180:280.
26 毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002.
27 Zhang J, Huang Y N, Mao C, et al. Structural, elastic and electro-nic properties of θ, (Al2Cu) and S (Al2CuMg) strengthening pre-cipitates in Al-Cu-Mg series alloys: First-principles calculations[J]. Solid State Communications,2012,152(23):2100.
28 Genevois C, Deschamps A, Denquin A, et al. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds[J]. Acta Materialia,2005,53(8):2447.
29 Elahi M A, Shabestari S G. Effect of various melt and heat treatment conditions on impact toughness of A356 aluminum alloy [J]. Transactions of Nonferrous Metals Society of China,2016,26(4):956.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[3] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[4] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[5] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[6] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[7] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[8] 温丽, 薛松柏, 马超力, 龙伟民, 钟素娟. 钎焊温度对纳米银焊膏真空钎焊Ni200合金接头组织与性能的影响[J]. 材料导报, 2019, 33(3): 386-389.
[9] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[10] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[11] 产玉飞, 陈长军, 张敏. 金属增材制造过程的在线监测研究综述[J]. 材料导报, 2019, 33(17): 2839-2846.
[12] 卞贵学, 陈跃良, 张勇, 王安东, 王哲夫. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16): 2746-2752.
[13] 于晓全,樊丁,黄健康,李春玲. 铝/钢电弧辅助激光对接熔钎焊接头组织及力学性能[J]. 材料导报, 2019, 33(15): 2479-2482.
[14] 王云鹏,胡嘉玮,许小云,刘道峰,蒋洪章,王晓勇,颜银标. 多向锻造对铝合金组织与性能影响的研究进展[J]. 材料导报, 2019, 33(13): 2266-2271.
[15] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed