Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2793-2797    https://doi.org/10.11896/j.issn.1005-023X.2018.16.017
  金属与金属基复合材料 |
热喷涂零件界面裂纹扩展行为影响因素研究
温飞娟1,2, 董丽虹2, 王海斗2, 吕振林1, 底月兰2
1 西安理工大学材料科学与工程学院,西安 710048;
2 装甲兵工程学院装备再制造技术国防科技重点实验室,北京 100072
Research on the Influence Factors of the Interfacial Crack Propagation Behavior of Thermal Spraying Parts
WEN Feijuan1,2, DONG Lihong2, WAND Haidou2, LYU Zhenlin1, DI Yuelan2
1 School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048;
2 National Key Laboratory for Remanufacturing, Academy of Armored Forces Engineering, Beijing 100072
下载:  全 文 ( PDF ) ( 1570KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热喷涂技术在提高构件寿命等方面得到了广泛应用,但界面裂纹的存在对零件寿命的影响尤其明显。本工作利用有限元法研究了残余应力、涂层厚度以及初始裂纹长度等因素对界面裂纹扩展的影响。研究结果表明:残余压应力的增加会导致临界载荷的降低,促使裂纹尖端应力相角增大,更易萌生界面裂纹;而残余拉应力的增加会导致临界载荷的升高,促使裂纹尖端应力相角降低,更易萌生垂直于界面的裂纹。此外,厚涂层易产生平行于界面的裂纹,以剪切失效为主导;薄涂层易产生垂直于界面的裂纹,以拉伸失效为主导。初始裂纹长度越长越易出现涂层与基体的剥离,导致涂层的失效。通过三点弯曲实验对不同初始长度的裂纹进行验证,实验结果与有限元模拟结果相近,验证了有限元模拟的正确性,为精确控制热喷涂零件界面的裂纹扩展提供了科学依据和理论基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
温飞娟
董丽虹
王海斗
吕振林
底月兰
关键词:  涂层  界面裂纹  残余应力  裂纹扩展  有限元法    
Abstract: Thermal spraying technology has been widely used in improving the life of components, but the existence of interface cracks has an obvious effect on the life of parts. In this paper, the effects of residual stress, coating thickness and initial crack length on the interface crack propagation were studied by using the finite element method. The result showed that the increase of residual compressive stress leaded to the decrease of the critical load and the increase of the phase angle of the crack tip, which was more likely to have the interface crack. The increase of residual stress could result in the increase of critical load and the decrease of the stress phase angle of the crack tip, which was more prone to generate cracks perpendicular to the interface. At the same time, the interface crack in the thick coating was the main crack mode, and was mainly shear failure. Thin coating was easy to produce cracks perpendicular to the interface, with tensile failure as the leading. The longer the initial crack length, the more prone to peeling of the coating and the substrate, resulting in failure of the coating. The three point bending test was used to verify the crack with different initial length, and the experimental results were similar to the finite element simulation results, which verified the correctness of the finite element simulation, and provided a scientific basis and theoretical basis for the accurate control of the interface crack propagation of the thermal spraying parts.
Key words:  coating    interfacial crack    residual stress    crack propagation    finite element method
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG14  
基金资助: 国家自然科学基金重点项目(51535011);国家自然科学基金面上项目(51675532)
通讯作者:  王海斗:通信作者,男,1969年生,教授,博士研究生导师,从事表面工程、摩擦学方面的研究 E-mail:wanghaidou@aliyun.com   
作者简介:  温飞娟:女,1993年生,硕士研究生,主要从事再制造零件裂纹扩展 E-mail:wenfeijuan123@163.com
引用本文:    
温飞娟, 董丽虹, 王海斗, 吕振林, 底月兰. 热喷涂零件界面裂纹扩展行为影响因素研究[J]. 材料导报, 2018, 32(16): 2793-2797.
WEN Feijuan, DONG Lihong, WAND Haidou, LYU Zhenlin, DI Yuelan. Research on the Influence Factors of the Interfacial Crack Propagation Behavior of Thermal Spraying Parts. Materials Reports, 2018, 32(16): 2793-2797.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.017  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2793
1 Zhang X C. Basic researches on the structural integrity and life prediction of plasma-sprayed coating based systems aiming for remanufactu-ring[D]. Shanghai: Shanghai Jiao Tong University,2007(in Chinese).
张显程.面向再制造的等离子喷涂层结构完整性及寿命预测基础研究[D].上海:上海交通大学,2007.
2 Han M, Huang J H, Chen S H. Research progress and review on key problems of stress and failure mechanism of thermal barrier coating[J]. Journal of Aeronautical Materials,2013,33(5):83(in Chinese).
韩萌,黄继华,陈树海.热障涂层应力与失效机理若干关键问题的研究进展与评述[J].航空材料学报,2013,33(5):83.
3 Fu L H. Finite element simulations on the erosion process and crack propagation of EB-PVD thermal barrier coatings[D]. Xiangtan: Xiangtan University,2013(in Chinese).
傅丽华.EB-PVD热障涂层冲蚀过程及其裂纹扩展的有限元模拟[D].湘潭:湘潭大学,2013.
4 Jiang Y, Xu B S, Wang H D, et al. Determination of residual stresses within plasma spray coating using Moiré interferometry method[J]. Applied Surface Science,2011,257(6):2332.
5 Zhu J, Xie H, Hu Z, et al. Residual stress in thermal spray coatings measured by curvature based on 3D digital image correlation technique[J]. Surface & Coatings Technology,2011,206(6):1396.
6 Wang D Z, Hu Q W, Zeng X Y. Residual stress and cracking behaviors of Cr13Ni5Si2, based composite coatings prepared by laser-induction hybrid cladding[J]. Surface & Coatings Technology,2015,274:51.
7 Renzelli M, Mughal M Z, Sebastiani M, et al. Design, fabrication and characterization of multilayer Cr-CrN thin coatings with tailored residual stress profiles[J]. Materials & Design,2016,112:162.
8 Nazir M H, Khan Z A, Stokes K. Analysing the coupled effects of compressive and diffusion induced stresses on the nucleation and propagation of circular coating blisters in the presence of micro-cracks[J]. Engineering Failure Analysis,2016,70:1.
9 Deng H, Shi H, Tsuruoka S. Influence of coating thickness and temperature on mechanical properties of steel deposited with Co-based alloy hardfacing coating[J]. Surface & Coatings Technology,2010,204(23):3927.
10 Li X N, Liang L H, Xie J J, et al. Thickness-dependent fracture characteristics of ceramic coatings bonded on the alloy substrates[J]. Surface & Coatings Technology,2014,258:1039.
11 Kwon J Y, Lee J H, Jung Y G, et al. Effect of bond coat nature and thickness on mechanical characteristic and contact damage of zirconia-based thermal barrier coatings[J]. Surface & Coatings Technology,2006,201(6):3483.
12 Xu Z H, Yang Y, Huang P, et al. Determination of interfacial pro-perties of thermal barrier coatings by shear test and inverse finite element method[J]. Acta Materialia,2010,58(18):5972.
13 Zotov N, Bartsch M, Eggeler G. Thermal barrier coating systems—Analysis of nanoindentation curves[J]. Surface & Coatings Techno-logy,2009,203(14):2064.
14 Zhao P F, Sun C A, Zhu X Y, et al. Fracture toughness measurements of plasma-sprayed thermal barrier coatings using a modified four-point bending method[J]. Surface & Coatings Technology,2010,204(24):4066.
15 Rabiei A, Evans A G. Failure mechanisms associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings[J]. Acta Materialia,2000,48(15):3963.
16 Clyne T W, Gill S C. Residual stresses in thermal spray coatings and their effect on interfacial adhesion: A review of recent work[J]. Journal of Thermal Spray Technology,1996,5(4):401.17 Elizalde M R, Sánchez J M, Martínez-Esnaola J M, et al. Interfacial fracture induced by cross-sectional nanoindentation in metal-ceramic thin film structures[J]. Acta Materialia,2003,51(14):4295.
18 Anderson T L. Fracture mechanics: Fundamentals and applications[M]. CRC Press,2015.
19 Nie P L. Fractural study of interfacial adhesion measurement with interfacial toughness for coating/substrate system[D]. Shanghai: Shanghai Jiao Tong University,2009(in Chinese).
聂璞林.界面断裂韧性与膜基结合性能关系的研究[D].上海:上海交通大学,2009.
20 Thurn G, Schneider G A, Bahr H A, et al. Toughness anisotropy and behavior of plasma sprayed ZrO2 thermal barrier coatings[J]. Surface & Coatings Technology,2000,123(2):147.
[1] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 万晔, 刘晶, 谭丽丽, 陈军修, 东家慧, 杨柯. 镁粉表面钙磷涂层的制备与性能[J]. 材料导报, 2019, 33(z1): 283-287.
[4] 郭策安, 赵宗科, 赵爽, 卢凤生, 赵博远, 张健. 电火花沉积AlCoCrFeNi高熵合金涂层的高速摩擦磨损性能[J]. 材料导报, 2019, 33(9): 1462-1465.
[5] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[6] 刘立君, 张一帆, 马川, 刘晓燕. 非均匀SiO2-H2O纳米流体辐射特性研究[J]. 材料导报, 2019, 33(8): 1268-1271.
[7] 郝贠洪, 李洁, 刘永利. 输电塔既有涂层与新涂层受风沙侵蚀的损伤机理[J]. 材料导报, 2019, 33(8): 1389-1394.
[8] 马晓波, 王进卿, 池作和, 张光学, 詹明秀. h-BN基复合陶瓷涂层防锅炉受热面的硫酸盐腐蚀性能[J]. 材料导报, 2019, 33(6): 960-964.
[9] 崔巍, 张煜杭, 张强, 冯子明. 考虑流体渗透压力的管道焊缝内裂纹扩展流固磁耦合方法[J]. 材料导报, 2019, 33(6): 1036-1041.
[10] 包鑫, 柏胜强, 吴子华, 吴汀, 顾明, 谢华清. CoSb3基方钴矿热电材料保护涂层研究进展[J]. 材料导报, 2019, 33(5): 784-790.
[11] 陈文龙, 刘敏, 张吉阜, 邓子谦, 肖晓玲, 唐维学. 等离子喷涂-物理气相沉积7YSZ热障涂层高温氧化过程中的阻抗谱分析[J]. 材料导报, 2019, 33(4): 605-606.
[12] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[13] 郑晓猛, 张永振, 杜三明, 刘建, 杨正海, 逄显娟. 减摩耐磨多层膜设计及研究进展[J]. 材料导报, 2019, 33(3): 444-453.
[14] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[15] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed