Please wait a minute...
材料导报  2018, Vol. 32 Issue (16): 2798-2802    https://doi.org/10.11896/j.issn.1005-023X.2018.16.018
  金属与金属基复合材料 |
不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能
崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲
沈阳师范大学化学与化工学院, 沈阳 110034
Corrosion Properties of Bulk Nanocrystalline Ag-25Ni Alloys Prepared by Different Processes in NaCl Solution
CUI Tianlu, GU Xue, JIA Zhongqiu, YIN Xiaotong, CAO Zhongqiu, ZHANG Ke
College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034
下载:  全 文 ( PDF ) ( 2102KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 分别通过粉末冶金法(PM)、机械合金化(MA)和液相还原(LPR)法借助于热压制备了一种常规尺寸和两种纳米晶Ag-25Ni块体合金。与相应常规尺寸合金对比,研究了两种不同工艺制备的块体纳米晶Ag-25Ni合金在0.3 mol/L NaCl溶液中的腐蚀电化学性能。结果表明,三种不同工艺制备的Ag-25Ni合金的腐蚀电流密度按LPR Ag-25Ni、PM Ag-25Ni和MA Ag-25Ni的顺序降低,它们的交流阻抗谱均由单容抗弧组成,且电荷传递电阻按MA Ag-25Ni、PM Ag-25Ni和LPR Ag-25Ni的顺序降低。与常规尺寸PM Ag-25Ni合金对比,纳米晶LPR Ag-25Ni合金的腐蚀速度增大;相反,纳米晶MA Ag-25Ni合金的腐蚀速度则降低。三种合金形成的钝化膜均为n型半导体,载流子密度大小按LPR Ag-25Ni、PM Ag-25Ni、MA Ag-25Ni的顺序降低,MA Ag-25Ni合金的钝化性能最好,这归因于三种合金显微组织的不同,MA Ag-25Ni合金中晶粒尺寸的降低和组元间固溶度的增加,导致其具有良好的化学稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔田路
顾雪
贾中秋
尹晓桐
曹中秋
张轲
关键词:  制备工艺  纳米晶  电化学腐蚀  Ag-Ni合金    
Abstract: A coarse-grained and two bulk nanocrystalline Ag-25Ni alloys are obtained by powder metallurgy (PM), liquid phase reduction (LPR) and mechanical alloying (MA) methods by means of hot pressing technique. Their corrosion properties were studied in NaCl solutions. The results show that corrosion current densities of three alloys prepared by different processes decrease in the order of LPR Ag-25Ni, PM Ag-25Ni and MA Ag-25Ni. Their electrochemical impedance spectroscopies consist of one capacitive arc and charge transfer resistances increase in the order of LPR Ag-25Ni, PM Ag-25Ni and MA Ag-25Ni. These show that the corrosion rate of nanocrystalline LPR Ag-25Ni alloy becomes faster, while the corrosion rate of nanocrystalline MA Ag-25Ni alloy becomes slower than that of coarse grained Ag-25Ni alloy. The passivation films were formed in 0.3 mol/L NaCl at 0.9 V potential for three Ag-25Ni alloys, and they all were n type semiconductors. The carrier densities decrease in the order of LPR Ag-25Ni, PM Ag-25Ni and MA Ag-25Ni. The passivation properties of MA Ag-25Ni alloy are the best because of the difference in microstructures among three Ag-25Ni alloys. For MA Ag-25Ni alloy, the decrease in the grain size and increase in the solid solubility contribute to its good chemical stability.
Key words:  preparation process    nanocrystalline    electrochemical corrosion    Ag-Ni alloys
               出版日期:  2018-08-25      发布日期:  2018-09-18
ZTFLH:  TG 113.23  
基金资助: 国家自然科学基金(51271127);辽宁省自然科学基金指导计划(201602679)
通讯作者:  曹中秋:通信作者,男,1965年生,博士,教授,研究方向为材料制备及腐蚀与防护 E-mail:caozhongqiu6508@sina.com   
作者简介:  崔田路:女,1993年生,硕士研究生,研究方向为金属腐蚀与防护 E-mail:cuitianlu@163.com
引用本文:    
崔田路, 顾雪, 贾中秋, 尹晓桐, 曹中秋, 张轲. 不同工艺制备的纳米晶Ag-25Ni合金在NaCl溶液中的腐蚀性能[J]. 材料导报, 2018, 32(16): 2798-2802.
CUI Tianlu, GU Xue, JIA Zhongqiu, YIN Xiaotong, CAO Zhongqiu, ZHANG Ke. Corrosion Properties of Bulk Nanocrystalline Ag-25Ni Alloys Prepared by Different Processes in NaCl Solution. Materials Reports, 2018, 32(16): 2798-2802.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.16.018  或          http://www.mater-rep.com/CN/Y2018/V32/I16/2798
1 Fang T H, Li W, Tao N R, et al. Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper[J]. Science,2011,331(6024):1587.
2 Warren P J, Larson D J, Weston C, et al. High resolution studies of metallic nanocomposite materials[J]. Nanostructured Materials,1999,12(5):697.
3 Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys[J]. Materials Science and Enginee-ring A,2010,527(15):3572.
4 Tjong S C, Chen H. Nanocrystalline materials and coatings[J]. Materials Science and Engineering R Reports,2004,45(1):1.
5 Boichyshyn L M, Hertsyk O M, Kovbuz M O, et al. Properties of amorphous alloys of Al-REM-Ni and Al-REM-Ni-Fe systems with nanocrystalline structure[J]. Materials Science,2013,48(4):555.
6 Nandi A, Gupta M D, Banthia A K. Sulfonated polybutadiene random ionomer as stabilizer for colloidal copper nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002,197:119.
7 Zhu H T, Zhang C Y, Yin Y S. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation[J]. Journal of Crystal Growth,2004,270(3-4):722.
8 Benjamin J S. Dispersion strengthened superalloys by mechanical alloying[J]. Metallurgical Transactions,1970,1:2943.
9 Nayak S S, Wollgarten M, Banhart J, et al. Nanocomposites and an extremely hard nanocrystalline intermetallic of Al-Fe alloys prepared by mechanical alloying[J]. Materials Sciences and Egineering A,2010,527(9):2370.
10 Wang C L, Lin S Z, Niu Y, et al. Microstructual properties of bulk nanocrystalline Ag-25Ni alloy prepared by hot pressing of mechanically pre-alloyed powders[J]. Applied physics A-Materials Science and Processing,2003, A76:157.
11 Fu G Y, Niu Y, Gesmundo F. Microstructual effects on the high temperature oxidation of two-phase Cu-Cr alloys in 1 atm O2[J]. Corrosion Science,2003,45(3):559.
12 Zeiger W, Schneider M, Scharnweber D. Corrosion behaviour of a nanocrystalline Fe-8Al alloy[J]. Nanostructured Materials,1995,6(5-8):1013.
13 Marciano F R, Almeida E C, Bonetti L F. The electrochemical behaviour of nanocrystalline nickel: A comparison with polycrystalli-nenickel under the same experimental condition[J]. Journal of Colloid and Interface Science,2010,342:636.
14 Luo W, Qian C, Wu X J, et al. Electrochemical corrosion behavior of nanocrystalline copper bulk[J]. Materials Science & Engineering A,2007,452-453:524.
15 Wang S G, Sun M, Cheng P C, et al. The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solutions with different concentrations[J]. Materials Chemistry and Physics,2011,127(3):459.
16 Wang L P, Zhang J Y, Gao Y, et al. Grain size effect in corrosion behavior of electrodeposited nanocrystalline Ni coatings in alkaline solution[J]. Scripta Materialia,2006,55(7):657.
17 Pinto E M, Ramos A S, Vieira M T, et al. A corrosion study of nanocrystalline copper thin films[J]. Corrosion Science,2010,52(12):3891.
18 Meng G Z, Li Y, Wang F H. The corrosion behavior of Fe-10Cr nanocrystalline coating [J]. Electrochimica Acta,2006,51(20):4277.
19 JBaron A, Szewieczek D, Nawrat G. Corrosion of amorphous and nanocrystalline Fe-based alloys and its influence on their magnetic behavior[J]. Electrochimica Acta,2007,52(18):5690.20 Yousef K M S, Koch C C, Fedkiw P S. Improved corrosion beha-viour of nanocrystalline zinc produced by pulse-current eletrodeposition[J]. Corrosion Science,2004,46:51.
21 Liu L, Li Y, Wang F H. Electrochemical corrosion behavior of nanocrystallized materials: Growth of passive film and local pitting corrrosion[J]. Acta Metallurgica Sinica,2014,50(2):212(in Chinese).
刘莉,李瑛,王福会.钝性纳米金属材料的电化学腐蚀行为研究:钝化膜生长和局部点蚀行为[J].金属学报,2014,50(2):212.
22 Li Y, Wang F H, Liu G. Grain-size effect on the electrochemical corrosion of surface nanocrystallized low carbon steel[J]. Journal of Chinese Society for Corrosion and Protection,2001,21(4):215(in Chinese).
李瑛,王福会,刘刚.表面纳米化低碳钢电化学行为尺寸效应[J].中国腐蚀与防护学报,2001,21(4):215.
23 Wang X Y, Li D J. Mechanical and electrochemical behavior of nanocrystalline and surface of 304 stainless steel[J]. Electrochimica Acta,2002,47(24):3939.
24 Morison S R. Electrochemistry at semiconductor and oxidized metal electrodes[M]. New York: Plenum Press,1980.
25 Dewald J F. The charge distribution at the zinc oxide-electrolyte interface[J]. Journal of Physics and Chemistry of Solids,1960,14(60):155.
26 Wilson H W. A model for the current-voltage curve of photoexcited semiconductor electrodes[J].Journal of Applied Physics,1977,48:4292.
[1] 王坤宇, 冯运莉, 柳昆. 纳米复相永磁材料的研究进展[J]. 材料导报, 2019, 33(z1): 116-121.
[2] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[3] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[4] 孙淑红, 朱艳, 青红梅, 胡永茂, 杨斌. 亚稳相纤锌矿铜锌锡硫(WZ-CZTS)纳米晶的合成及光伏应用的研究现状与进展[J]. 材料导报, 2019, 33(5): 761-769.
[5] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[6] 左迎峰, 李萍, 屠茹茹, 赵星, 袁光明, 吴义强. 基于响应曲面法优化酸解氧化制备高醛基含量的双醛淀粉的工艺条件[J]. 材料导报, 2019, 33(2): 335-341.
[7] 毛虎,杨宏亮,史晓斌. 纳米晶NiTi形状记忆合金的研究进展[J]. 材料导报, 2019, 33(13): 2237-2242.
[8] 郝佳瑜, 刘易斯, 李文章, 李洁. 形貌可控的铂类贵金属氧还原电催化剂研究进展[J]. 材料导报, 2019, 33(1): 127-134.
[9] 张聪惠,王 婧,宋 薇,王 洋,赵 旭,王耀勉. 高能喷丸处理工业纯钛焊接接头在10%HCl溶液中的腐蚀行为[J]. 《材料导报》期刊社, 2018, 32(9): 1564-1570.
[10] 成小乐, 尹君, 屈银虎, 符寒光, 赵冰. 连续碳化硅纤维增强钛基(SiCf/Ti)复合材料的制备技术[J]. 《材料导报》期刊社, 2018, 32(5): 796-807.
[11] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[12] 潘书万,庄琼云,陈松岩,黄巍,李成,郑力新. 硅(100)衬底表面快速热退火制备硒纳米晶薄膜的结晶动力学[J]. 《材料导报》期刊社, 2018, 32(11): 1928-1931.
[13] 席文,陈铮,胡石. 形变诱发纳米晶局域固态非晶化的研究进展[J]. 《材料导报》期刊社, 2018, 32(1): 116-121.
[14] 雷若姗, 陈广润, 徐时清, 王焕平, 汪明朴. 大塑性变形工艺制备纳米晶过饱和固溶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 130-134.
[15] 李庆达, 郭建永, 胡军, 王宏立, 连法增, 陆曹卫. 通过改进的制备工艺提高FINEMET纳米晶磁粉芯的磁性能及其机理*[J]. 《材料导报》期刊社, 2017, 31(16): 26-30.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed