Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23100214-11    https://doi.org/10.11896/cldb.23100214
  无机非金属及其复合材料 |
PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究
纪泳丞, 王大洋, 贾艳敏*
东北林业大学土木与交通学院,哈尔滨 150040
Numerical Simulation and Size Effect Study on PVA Fiber-reinforced Brick Aggregate Recycled Concrete
JI Yongcheng, WANG Dayang, JIA Yanmin*
School of Civil Engineering and Transportation, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 69251KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与刚性纤维相比,聚乙烯醇(PVA)纤维具有更细的直径和在混凝土中更加复杂的分布。采用两种建模方法分别建立了PVA纤维增强再生混凝土(FFF-BAC)的细观模型。其中,细观模型1(M1):水泥砂浆基质和PVA纤维结合视为一种特殊的工程水泥基复合材料(S-ECC),并与砖粗骨料(BA)、界面过渡区(ITZ)组合成FFF-BAC。细观模型2(M2):FFF-BAC为水泥砂浆、PVA、BA、ITZ组合成的四相材料。结合文献中S-ECC的试验结果,计算S-ECC的应力-应变关系。分别建立M1、M2,并与FFF-BAC单轴压缩试验结果进行比较,结果表明,M1与测试结果更加一致,各项参数的最大误差为11.0%。基于M1研究了FFF-BAC截面的损伤破坏过程,预测了BA掺量对抗压强度的影响,探究了不同尺寸的FFF-BAC的破坏模式,建立了可预测不同BA掺量的FFF-BAC抗压强度的尺寸效应公式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
纪泳丞
王大洋
贾艳敏
关键词:  再生混凝土  砖骨料  细观模拟  抗压强度  尺寸效应    
Abstract: Compared to rigid fibers, PVA fibers have a finer diameter and a more complex distribution in concrete. Two modeling methods were used to establish a microscopic model of PVA fiber reinforced recycled concrete (FFF-BAC). Model 1 (M1): considering the combination of cement mortar matrix and PVA fiber as a special engineering cement-based composite material (S-ECC), and combined with brick aggregate (BA) and interface transition zone (ITZ) to form FFF-BAC. Model 2 (M2): FFF-BAC is considered as a four phase material composed of cement mortar, fiber, BA, and ITZ. M1 and M2 were established respectively, and compared with the uniaxial compressive strength test results of flexible fiber reinforced brick aggregate recycled concrete (FFF-BAC), to verify the accuracy of the two models. The results indicate that the M1 simulation is more consistent with the experimental results, with a maximum error of 11.0% for each parameter. The damage and failure process of FFF-BAC was studied, and the effect of BA content on compressive strength was predicted based on M1. The failure modes of different sizes of FFF-BAC were explored. Combining Bazant's size effect formula, a size effect formula for FFF-BAC considering BA content was established.
Key words:  recycled concrete    brick aggregate    meso-scale simulation    compressive strength    size effect
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TU501  
基金资助: 国家自然科学基金面上项目(52370128)
通讯作者:  *贾艳敏,博士,东北林业大学土木与交通学院教授、博士研究生导师。目前从事桥梁结构耐久性和混凝土耐久性方面的相关研究。yongchengji@nefu.edu.cn   
作者简介:  纪泳丞,博士,东北林业大学土木与交通学院教授、博士研究生导师。目前从事桥梁结构耐久性和固废材料循环再应用的相关研究。
引用本文:    
纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
JI Yongcheng, WANG Dayang, JIA Yanmin. Numerical Simulation and Size Effect Study on PVA Fiber-reinforced Brick Aggregate Recycled Concrete. Materials Reports, 2025, 39(3): 23100214-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100214  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23100214
1 Wang L, He T, Zhou Y, et al. Construction and Building Materials, 2021, 282, 122706.
2 Ji Y, Zhang H, Li W. Case Studies in Construction Materials, 2022, 17, e01240.
3 Yao Z, Duan D, Dang F, et al. Journal of Xi'an University of Technology, 2018(4), 475 (in Chinese).
姚泽良, 段东旭, 党发宁, 等. 西安理工大学学报, 2018(4), 475.
4 Liang N, Zhou K, Lan F, et al. Materials Reports, 2023, 37(11), 104(in Chinese).
梁宁慧, 周侃, 兰菲, 等. 材料导报, 2023, 37(11), 104.
5 Bi J, Zhao Y, Bao C, et al. Journal of Hunan University (Natural Sciences), 2021(3), 99 (in Chinese).
毕继红, 赵云, 鲍春, 等. 湖南大学学报(自然科学版), 2021(3), 99.
6 Sun X, Gao Z, Cao P, et al. Construction and Building Materials, 2019, 202, 58.
7 Zhang J, Wu Z, Yu H, et al. Engineering, 2022, 16, 220.
8 Yu J, Zhang B, Chen W, et al. Construction and Building Materials, 2020, 260, 120444.
9 Zhang L, Yu Z, Shen L, et al. New Building Materials, 2019, 46(3), 18 (in Chinese).
张丽, 余振鹏, 沈丽, 等. 新型建筑材料, 2019, 46(3), 18.
10 Su J, Zhu J, Shi C, et al. Journal of Hunan University (Natural Sciences), 2022, 49(5), 174 (in Chinese).
苏捷, 朱君, 史才军, 等. 湖南大学学报(自然科学版), 2022, 49(5), 174.
11 Chen Y. Fiber pull-out test and macroscopic mechanical properties of fiber reinforced cement-based. Master's Thesis, Hefei University of Technology, China, 2019 (in Chinese).
陈亚迪. 纤维拔出试验及纤维增强水泥基材料宏观力学性能研究. 硕士学位论文, 合肥工业大学, 2019.
12 Said A, Elsayed M, et al. Case Studies in Construction Materials, 2022, 16, e01009.
13 Zhu J, Li Z, Wang X, et al. Chinese Journal of Basic Science and Engineering, 2021, 29(2), 471 (in Chinese).
朱俊涛, 李志强, 王新玲, 等. 应用基础与工程科学学报, 2021, 29(2), 471.
14 Li K, Yu P, Liu W, et al. Industrial Architecture, 2020, 50(3), 172 (in Chinese).
李可, 喻鹏, 刘伟康, 等. 工业建筑, 2020, 50(3), 172.
15 Zhou J, Pan J, Leung C K Y. Journal of Materials in Civil Engineering, 2015, 27(1), 04014111.
16 Li H. Experimental research on ultra high toughness cementitious composites. Master's Thesis, Dalian University of Technology, China, 2009 (in Chinese).
李贺东. 超高韧性水泥基复合材料试验研究. 硕士学位论文, 大连理工大学, 2009.
17 Zheng Y, Zhuo J, Zhang P, et al. Journal of Cleaner Production, 2022, 370, 133555.
18 Abbas A, Fathifazl G, Fournier B, et al. Materials Characterization, 2009, 60(7), 716.
19 Kim H K, Lim Y, Tafesse M, et al. Construction and Building Materials, 2022, 317, 125840.
20 Mathew A A, Saibabu S, Mohan V, et al. In:Proceedings of SECON 2020: Structural Engineering and Construction Management 4. Springer International Publishing, 2021, pp. 883.
21 Jayasuriya A, Adams M P, Bandelt M J. Journal of Materials in Civil Engineering, 2020, 32(4), 04020044.
22 Xiong W, Tan S, Peng D, et al. Journal of Architecture and Civil Engineering, 2024, 41(1), 181 (in Chinese).
熊汪, 覃书豪, 彭定东, 等. 建筑科学与工程学报, 2024, 41(1), 181.
23 Jin L, Yang W, Yu W, et al. Engineering Mechanics, 2020, 37(3), 56 (in Chinese).
金浏, 杨旺贤, 余文轩, 等. 工程力学, 2020, 37(3), 56.
24 Bažant Z P, Caner F C, Adley M D, et al. Journal of Engineering Mechanics, 2000, 126(9), 962.
[1] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[2] 张彩利, 王怀毅, 王犇, 于焱龙, 张崇僖. 大掺量钢渣微粉-水泥泡沫轻质土的孔结构表征及其对力学性能的影响[J]. 材料导报, 2025, 39(1): 23100044-9.
[3] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[4] 孙海宽, 甘德清, 薛振林, 刘志义, 张雅洁. 碱渣改性充填体早期力学特性及能量演化特征[J]. 材料导报, 2024, 38(9): 22070248-7.
[5] 何俊, 罗时茹, 龙思昊, 朱元军. 不同吸水环境下碱渣固化淤泥毛细吸水和强度性质[J]. 材料导报, 2024, 38(9): 22100254-6.
[6] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[7] 王志良, 陈玉龙, 申林方, 施辉盟. 偏高岭土基地聚合物对水泥固化红黏土的改善机制[J]. 材料导报, 2024, 38(8): 22080080-7.
[8] 刘文欢, 胡静, 赵忠忠, 杜任豪, 万永峰, 雷繁, 李辉. 铅冶炼渣基生态胶凝材料的研发及重金属固化[J]. 材料导报, 2024, 38(6): 22120057-8.
[9] 马彬, 黄启钦, 肖薇薇, 黄小林. 钢渣-偏高岭土基导电地聚合物的压敏性能研究[J]. 材料导报, 2024, 38(6): 22040039-6.
[10] 霍海峰, 杨雅静, 孙涛, 樊戎, 蔡靖, 胡彪. 有压与无压烧结雪无侧限抗压强度对比试验研究[J]. 材料导报, 2024, 38(5): 23060124-6.
[11] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[12] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[13] 陈晓光, 赵文升, 吉祥龙, 王剑云. 透水混凝土的历史、现状与高性能化展望[J]. 材料导报, 2024, 38(24): 23100172-9.
[14] 宋茂林, 张朝阳, 张尚枫, 侯晓伟, 石礼岗, 于斌, 罗宇维, 孔祥明. 超临界CO2环境下磷酸盐改性铝酸盐水泥性能变化[J]. 材料导报, 2024, 38(24): 23090114-4.
[15] 陈宇良, 王双翼, 李洪, 李培泽. 复杂应力状态下玻璃纤维再生混凝土损伤演变及应力-应变本构关系研究[J]. 材料导报, 2024, 38(24): 23080024-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed