Please wait a minute...
材料导报  2025, Vol. 39 Issue (3): 23100217-8    https://doi.org/10.11896/cldb.23100217
  无机非金属及其复合材料 |
基于混沌博弈理论的多源微波加热温度均匀性优化
杨彪1,2,3,*, 韩泽民1, 段绍米1, 黄宏彬1, 吴照刚1, 彭飞云1
1 昆明理工大学信息工程与自动化学院,昆明 650500
2 昆明理工大学云南省人工智能重点实验室,昆明 650500
3 昆明理工大学非常规冶金教育部重点实验室,昆明 650093
Optimization of Temperature Uniformity for Multi-source Microwave Heating Based on Chaos Game Theory
YANG Biao1,2,3,*, HAN Zemin1, DUAN Shaomi1, HUANG Hongbin1, WU Zhaogang1, PENG Feiyun1
1 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
2 Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China
3 Key Laboratory of Unconventional Metallurgy of Ministry of Education, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 24817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作研究了多源微波加热系统中材料内部整体温度均匀性的优化问题,也就是在谐振腔体存在驻波的情况下,实现温度场梯度最小的优化目标。首先,从微波频率的动态变化出发,采用热点交替的移频方法,逆转材料温域分布,实现材料间冷热点的中和,达到均匀加热的目的。然后,基于不同微波源之间的耦合程度差异,引入混沌博弈优化算法重构不同频率下各个微波源的馈入功率数值,在确保温度均匀性不变的情况下,提升材料的整体温度。最后,通过多源微波与SiC材料相互作用的仿真实例来分析加热过程,并开展对均匀性指标的有效计算。数值计算结果表明,与固定频率加热和扫频加热相比,所提出的方法均匀性分别提升了26.3%~70.2%和60.0%~62.7%,同时加热效率分别提高了2.5%~41.7%和14.2%~14.6%,能有效地改善微波加热的温度均匀性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨彪
韩泽民
段绍米
黄宏彬
吴照刚
彭飞云
关键词:  微波加热  多微波源  功频协同  热点交替  混沌博弈优化算法  均匀性    
Abstract: This work studied the optimization problem of the overall temperature uniformity inside the material in a multi-source microwave heating system, which aimed to achieve the optimization goal of minimizing the temperature field gradient in the presence of standing waves in the resonant cavity. Firstly, starting from the dynamic changes of microwave frequency, this work adopted the frequency shift method of alternating hot spots to reverse the temperature distribution of the material, achieved the neutralization of cold hot spots between the media, and achieved the goal of uniform heating. Then, based on the difference in the degree of coupling between different microwave sources, the chaos game optimization algorithm was introduced to reconstruct the value of the feed-in power of each microwave source at different frequencies, to improve the ove-rall temperature of the material under the condition of ensuring the unchanged temperature uniformity. Finally, a simulation example of the interaction between multi-source microwaves and SiC material was used to analyze the heating process and effectively calculate the uniformity index; The numerical calculations show that the proposed method improves the uniformity by 26.3%—70.2% and 60.0%—62.7% compared with the fixed-frequency heating and the swept-frequency heating, respectively, while the heating efficiency is improved by 2.5%—41.7% and 14.2%—14.6%, respectively, which verifies that the proposed method can effectively improve the temperature uniformity of microwave heating.
Key words:  microwave heating    multiple microwave sources    power frequency coordination    hot spot alternation    chaos game optimization algorithm    uniformity
出版日期:  2025-02-10      发布日期:  2025-02-05
ZTFLH:  TP273  
基金资助: 国家自然科学基金(62363019;61863020)
通讯作者:  *杨彪,博士,昆明理工大学教授、博士研究生导师。主要从事复杂过程的优化和控制、多智能体的协调输出与分布式协同控制、微波能等新能源的优化与评估、多物理场耦合软测量及数值计算方面的研究。biaoykmust@kust.edu.cn   
引用本文:    
杨彪, 韩泽民, 段绍米, 黄宏彬, 吴照刚, 彭飞云. 基于混沌博弈理论的多源微波加热温度均匀性优化[J]. 材料导报, 2025, 39(3): 23100217-8.
YANG Biao, HAN Zemin, DUAN Shaomi, HUANG Hongbin, WU Zhaogang, PENG Feiyun. Optimization of Temperature Uniformity for Multi-source Microwave Heating Based on Chaos Game Theory. Materials Reports, 2025, 39(3): 23100217-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100217  或          http://www.mater-rep.com/CN/Y2025/V39/I3/23100217
1 Wang J W,Li L,Qi J R,et al.Materials Reports,2023,37(4),21060010 (in Chinese).
王均委,李琳,齐家瑞,等.材料导报,2023,37(4),21060010.
2 Guo S H,Ghen G,Peng J H,et al.Transactions of Nonferrous Metals So-ciety of China,2011,21(9),2122.
3 Zhang Y H,Yang H Y,Yan B W,et al.Journal of Food Engineering,2021,294,110409.
4 Liao Y H,Lan J Q,Zhang C,et al.Materials,2016,9(5),309.
5 Yang F M,Wang W W,Yan B,et al.Processes,2019,7(6),341.
6 Dinani S T,Feldmann E,Kulozik U.Food and Bioproducts Processing,2021,127,328.
7 Du Z L,Wu Z,Gan W W,et al.IEEE Access,2019,7,184726.
8 Tang Z M,Hong T,Liao Y H,et al.Applied Thermal Engineering,2018,131,642.
9 Yang R,Fathy A E,Morgan M T,et al.Food Research International,2022,154,110985.
10 Yang R,Chen J J.Innovative Food Science & Emerging Technologies,2022,81,103157.
11 Kalinke I,Pusl F,Häderle F,et al.Innovative Food Science & Emerging Technologies,2023,86,103388.
12 Azizi M,Aickelin U,Khorshidi H A,et al.Journal of Advanced Research,2022,41,89.
13 Talatahari S,Azizi M.Computers & Industrial Engineering,2020,145,106560.
14 Jiang P,Liu Z K,Wang J Z,et al.Resources Policy,2021,73,102234.
15 Ramadan A,Kamel S,Hussein M M,et al.IEEE Access,2021,9,51582.
16 Alsaidan I,Shaheen M A M,Hasanien H M,et al.Sustainability,2021,13(14),7911.
17 Yang B,Gao H,Li X P,et al.Control and Decision,2023,38(4),989 (in Chinese).
杨彪,高皓,李鑫培,等. 控制与决策,2023,38(4),989.
18 Li W X,Ye J H,Yang Y,et al.International Journal of Heat and Mass Transfer,2023,200,123543.
19 Alfaifi B,Tang J M,Jiao Y,et al.Journal of Food Engineering,2014,120,268.
20 Tamang S,Aravindan S.Applied Thermal Engineering,2019,162,114250.
21 He J L,Yang Y,Zhu H C,et al.Applied Thermal Engineering,2020,178,115594.
22 Zhu H C,Su J H,Yang F M,et al.Journal of Food Engineering,2023,337,111232.
23 Ye J H,Xia Y,Yi Q Y,et al.Innovative Food Science & Emerging Technologies,2021,73,102767.
[1] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[2] 司春棣, 崔亚宁, 李松, 贾彦顺, 凡涛涛, 张义. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 24050001-13.
[3] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[4] 赵华, 唐杰, 刘伟男. 碳化硅沥青胶浆自愈合行为研究及最佳掺量的确定[J]. 材料导报, 2024, 38(14): 23040058-12.
[5] 赵静, 王选仓, 辛磊, 宋子豪, 任俊儒, 杨朝山. 用于微波除冰的吸波骨料选择及路面吸波功能层设计[J]. 材料导报, 2024, 38(12): 22090275-8.
[6] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[7] 王均委, 李琳, 齐家瑞, 郑勤红, 姚斌. 圆柱形光子晶体微波反应腔的加热效率和均匀性研究[J]. 材料导报, 2023, 37(4): 21060010-8.
[8] 王炳英, 李丽莎, 秦志, 黄鹏, 邹钰琨, 温志刚, 龚宝明. 基于组织的DH36钢焊缝微观应力应变模拟研究[J]. 材料导报, 2023, 37(21): 22020166-5.
[9] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[10] 居殿春, 武兆勇, 张荣良, 王海风, 王锋, 严定鎏. 微波加热Mg-TiO2混合物的研究[J]. 材料导报, 2020, 34(Z1): 140-143.
[11] 赵毅, 杨旋, 郝增恒, 梁乃兴, 田于锋. 沥青混合料均匀性数字图像评价方法研究进展[J]. 材料导报, 2020, 34(23): 23088-23099.
[12] 吕瑞阳, 宋凯, 董世运, 门平, 康学良, 闫世兴, 刘晓亭. 24CrNi合金钢力学性能重构磁滞参量定量评价[J]. 材料导报, 2020, 34(14): 14168-14174.
[13] 孙国元, 张敏. 块体金属玻璃的加工硬化行为[J]. 材料导报, 2019, 33(3): 462-469.
[14] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[15] 席小鹏, 王快社, 王文, 彭湃, 乔柯, 余良良. 搅拌摩擦加工制备颗粒增强铝基复合材料的研究现状及展望[J]. 材料导报, 2018, 32(21): 3814-3822.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed