Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23050146-17    https://doi.org/10.11896/cldb.23050146
  金属与金属基复合材料 |
陶瓷钎焊用钎料的国内外研究进展
吴船江1, 张亮1,*, 王曦2, 陈晨2, 卢晓2
1 厦门理工学院材料科学与工程学院,福建 厦门 361024
2 江苏师范大学机电工程学院,江苏 徐州 221116
Research Progress of Brazing Materials for Ceramic Brazing at Home and Abroad
WU Chuanjiang1, ZHANG Liang1,*, WANG Xi2, CHEN Chen2, LU Xiao2
1 School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, Fujian, China
2 College of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
下载:  全 文 ( PDF ) ( 79257KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷材料具有良好的抗高温、耐腐蚀等性能,对航空航天、化工、核能等领域的发展具有极大的影响。然而,陶瓷与异种材料的互连存在热膨胀系数不匹配等固有缺陷,其导致的残余应力过大、材料难以润湿等是当前相关行业急需解决的问题。钎焊是连接陶瓷材料的主要方法之一,所使用的钎料在很大程度上决定了钎焊接头的综合性能。目前,针对陶瓷材料的连接已开发出多种钎料,如Ag-Cu体系钎料、Ni基钎料、玻璃钎料、高熵合金钎料等,但实现以上钎料与陶瓷材料可靠连接的手段还尚未完善,使用不同体系钎料钎焊的接头性能存在差异。因此,本文综述了陶瓷材料与异种材料钎焊过程中存在的差异与问题,以期为后续陶瓷/异种材料连接的发展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴船江
张亮
王曦
陈晨
卢晓
关键词:  陶瓷材料  钎焊  钎料  接头性能    
Abstract: Ceramic materials have a far-reaching impact on the development of aerospace, chemical, nuclear energy and other fields due to their good resistance to high temperatures and corrosion. However, the interconnection of ceramics and dissimilar materials suffers from inherent defects such as mismatched coefficients of thermal expansion, which leads to excessive residual stresses and difficulty in wetting the materials, and so on, and is an urgent problem in the relevant industries at present. Brazing is one of the main methods for connecting ceramic materials, and the brazing material used largely determines the comprehensive performance of the brazed joint. At present, a variety of brazing materials have been developed for the connection of ceramic materials, such as Ag-Cu system brazing materials, Ni-based brazing materials, glass brazing materials, high-entropy alloy brazing materials, etc. However, the means of realizing reliable connection between the above brazing materials and ceramic materials has not yet been perfected, and there are differences in the joint performance of the joints brazed by using different systems of brazing materials. Therefore, this paper reviews the differences and problems in the brazing process of ceramic materials and dissimilar mate-rials, with a view to providing a reference for the subsequent development of ceramic/dissimilar materials connection.
Key words:  ceramic materials    brazing    brazing materials    joint performance
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TG425  
基金资助: 福建省“闽江学者奖励计划”特聘教授;江苏省自然科学基金;厦门理工学院引进高层次人才科研启动项目(YKJ22054R)
通讯作者:  *张亮,福建省“闽江学者”特聘教授。主要从事钎焊材料与技术、电子封装技术、无铅互连与可靠性的研究工作,发表学术论文 100 余篇。zhangliangjsnu@126.com   
作者简介:  吴船江,厦门理工学院材料科学与工程学院硕士研究生,在张亮教授的指导下进行研究。目前主要研究领域为钎焊与电子互联。
引用本文:    
吴船江, 张亮, 王曦, 陈晨, 卢晓. 陶瓷钎焊用钎料的国内外研究进展[J]. 材料导报, 2024, 38(16): 23050146-17.
WU Chuanjiang, ZHANG Liang, WANG Xi, CHEN Chen, LU Xiao. Research Progress of Brazing Materials for Ceramic Brazing at Home and Abroad. Materials Reports, 2024, 38(16): 23050146-17.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050146  或          http://www.mater-rep.com/CN/Y2024/V38/I16/23050146
1 Liu H K, Liu H X, Xu W, et al. Ceramics International, 2022, 48(8), 11018.
2 Wang X L, Gao X D, Zhang Z H, et al. Journal of the European Ceramic Society, 2021, 41(9), 4671.
3 Ravikumar K, Sarkar D, Basu B. Journal of Biomaterials Applications, 2018, 32(9), 1174.
4 Meunier C, Zuo F, Peillon N, et al. Journal of the American Ceramic Society, 2017, 100(3), 929.
5 Guo H, Yang S X, Chen H T, et al. Ceramics International, 2020, 46(10), 16677.
6 Guo H L, Zhang J, Mao X J, et al. Journal of the European Ceramic Society, 2018, 38(9), 3235.
7 Ong F S, Nishi R, Tobe H, et al. Journal of the European Ceramic Society, 2022, 42(6), 2707.
8 Li M, Shi K Q, Zhu D D, et al. Journal of Manufacturing Processes, 2021, 66, 220.
9 Ayoub G, Veljovic D, Zebic M L, et al. Ceramics International, 2018, 44(15), 18200.
10 Mahato N, Banerjee A, Gupta A, et al. Progress in Materials Science, 2015, 72, 141.
11 Chen H Y, Nai X, Zhao S, et al. Crystals, 2021, 11(4), 13.
12 Chen H Y, Nai X, Zhao S, et al. Journal of the American Ceramic Society, 2022, 105(6), 3786.
13 Madeira S, Pinto A M P, Rodrigues L C, et al. Materials & Design, 2017, 120, 394.
14 Gambaro S, Valenza F, Passerone A, et al. Journal of the European Ceramic Society, 2016, 36(16), 4185.
15 Lemus-Ruiz J, Ceja-Cárdenas L, Verduzco J A, et al. Journal of Materials Science, 2008, 43(18), 6296.
16 Saito N, Ikeda H, Yamaoka Y, et al. Journal of Materials Science, 2012, 47(24), 8454.
17 Lan L, Yu J, Yang Z, et al. Ceramics International, 2016, 42(1, Part B), 1633.
18 Li S, Duan H, Liu S, et al. International Journal of Refractory Metals and Hard Materials, 2000, 18(1), 33.
19 Jarman J D, Fahrenholtz W G, Hilmas G E, et al. Journal of the European Ceramic Society, 2022, 42(13), 5195.
20 Li S B, Ni N, Wu B B, et al. Journal of the European Ceramic Society, 2021, 41(12), 5850.
21 Liu D, Song Y, Shi B, et al. Journal of Materials Science & Technology, 2018, 34(10), 1843.
22 Li J X, Fu W, Song X G, et al. Materials Letters, 2023, 331.
23 Cao J, Zheng Z J, Wu L Z, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012, 535, 62.
24 Song X G, Cao J, Li C, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2011, 528(22-23), 7030.
25 Lee W C, Kwon O Y, Kang C S. Journal of Materials Science, 1995, 30(7), 1679.
26 Wang Y F, Liu M Q, Zhang H, et al. Journal of the European Ceramic Society, 2021, 41(7), 4273.
27 Wang X H, Dong D, Yang X H, et al. Crystals, 2021, 11(5), 12.
28 Zhu Q Y, Li S H, Hu K J, et al. Ceramics International, 2021, 47(21), 30247.
29 Yang X H, Xue Y, Wang S G, et al. Coatings, 2022, 12(10), 12.
30 Jin B X, Huang X, Zou M Q, et al. Ceramics International, 2022, 48(3), 3455.
31 Fan B B, Xu J K, Lei H C, et al. Ceramics International, 2022, 48(13), 18551.
32 Zhu Q, Cai Y, Liu Z, et al. Ceramics International, 2023, 49(6), 9779.
33 Jiang H, Li C, Mao X J, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022, 846, 10.
34 Peng Y, Li J L, Shi J M, et al. Vacuum, 2021, 192, 10.
35 Yang Z W, Yang J H, Han Y J, et al. Vacuum, 2020, 181, 11.
36 Xue H T, Li T, Guo W B, et al. Materials Letters, 2022, 307, 4.
37 Song Y, Liu D, Hu S, et al. Journal of the European Ceramic Society, 2019, 39(4), 696.
38 Song Y, Liu D, Hu S, et al. Ceramics International, 2019, 45(7), 8962.
39 Xue H, Ding Z, Guo W, et al. Materials Letters, 2022, 310, 121500.
40 Dong D, Zhu D D, Liang Y F, et al. Journal of Materials Research and Technology, 2021, 11, 1942.
41 Bian H, Song Y Y, Liu D, et al. Chinese Journal of Aeronautics, 2020, 33(1), 383.
42 Wang Z Y, Wang G, Li M N, et al. Carbon, 2017, 118, 723.
43 Wang G, Cai Y J, Xu Q M, et al. Journal of Materials Research and Technology, 2020, 9(3), 3430.
44 Xue H T, Li T, Guo W B, et al. Materials Reports, 2023, 37(1), 21090089(in Chinese).
薛海涛, 李涛, 郭卫兵, 等. 材料导报, 2023, 37(1), 21090089.
45 Wang G, Cai Y, Xu Q, et al. Journal of Materials Research and Technology, 2020, 9(3), 3430.
46 Ma X J, Mao Y W, Duan Y, et al. Advanced Engineering Materials, 2021, 23(4), 9.
47 Lin K L, Singh M, Asthana R. Materials Characterization, 2014, 90, 40.
48 Yang Z W, Wang C L, Wang Y, et al. Journal of Materials Science & Technology, 2017, 33(11), 1392.
49 Zhang L X, Zhang B, Sun Z, et al. Journal of Alloys and Compounds, 2019, 782, 981.
50 Chu K, Wang F, Li Y B, et al. Carbon, 2018, 133, 127.
51 Mao Y, Peng L, Wang S, et al. Journal of Alloys and Compounds, 2017, 716, 81.
52 Kim W J, Lee T J, Han S H. Carbon, 2014, 69, 55.
53 Stankovich S Z, Dikin D A, Dommett G H B, et al. Graphene-based Composite Materials, 2006, 442, 282.
54 Sun Z, Zhang L X, Hao T D, et al. Ceramics International, 2018, 44(13), 15809.
55 Song X R, Li H J, Zeng X, et al. Materials Letters, 2016, 183, 232.
56 Singh M, Matsunaga T, Lin H T, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2012, 557, 69.
57 Guo S W, Xu D H, Li Y H, et al. Journal of Supercritical Fluids, 2021, 170, 15.
58 Wu J J, Jiang X W, Wang Y, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2021, 806, 10.
59 Lu Y, Zhu M X, Zhang Q, et al. Journal of the European Ceramic Society, 2020, 40(4), 1496.
60 Lu Y, Wang J, Zheng K H, Journal of Manufacturing Processes, 2021, 68, 1303.
61 Zheng K H, Zhang Q, Wang J, et al. Journal of the European Ceramic Society, 2021, 41(3), 2076.
62 Zheng K H, Zhang Q, Wang J, et al. Ceramics International, 2021, 47(2), 2758.
63 Zhang Q, Lu Y, Wang J, et al. Vacuum, 2021, 185, 10.
64 Wang Z K, Liu Y, Zhang H, et al. Journal of the European Ceramic Society, 2021, 41(15), 7533.
65 Shi H J, Peng H B, Chai Y D, et al. Journal of the European Ceramic Society, 2021, 41(13), 6238.
66 Song Y Y, Liu D, Li X Y, et al. Journal of Manufacturing Processes, 2020, 58, 905.
67 Shi H J, Chai Y D, Li N, et al. Journal of the European Ceramic Society, 2020, 40(15), 5162.
68 Shi H J, Chai Y D, Li N, et al. Journal of the European Ceramic Society, 2021, 41(7), 3960.
69 Mu D, Feng K, Lin Q, et al. Ceramics International, 2019, 45(17), 22175.
70 Li Y, Chen C, Yi R. The International Journal of Advanced Manufacturing Technology, 2021, 114(1-2), 27.
71 Koleňák R, Kostolný I, Drápala J, et al. Soldering & Surface Mount Technology, 2019, 31(2), 93.
72 Liu Y, Cui W, Ji X. Materials Letters, 2022, 322, 132456.
73 Ghosh S, Sengupta A, Pal K S, et al. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2012, 43A(3), 912.
74 Liu G W, Qiao G J, Wang H J, et al. Journal of Materials Engineering and Performance, 2011, 20(9), 1563.
75 Li L, Guo W G, Yu X, et al. Ceramics International, 2017, 43(9), 6684.
76 Wu S, Qin Y, Fu D R, et al. Ceramics International, 2020, 46(10), 15972.
77 Wang L, Kang W T, Gao P Z, et al. Ceramics International, 2020, 46(6), 8244.
78 Zhu W W, Chen J C, Hao C Y, et al. Journal of Materials Science & Technology, 2014, 30(9), 944.
79 Lim J H, Park C K, Cho S H, et al. Ceramics International, 2018, 44(9), 10829.
80 Bale S, Rahman S, Awasthi A M, et al. Journal of Alloys and Compounds, 2008, 460(1-2), 699.
81 Akram M Y, Ferraris M, Casalegno V, et al. Journal of the European Ceramic Society, 2018, 38(4), 1802.
82 Chen H Y, Ren X W, Guo W, et al. Journal of Manufacturing Processes, 2020, 56, 735.
83 Sun Q, Yang L D, Yang W C, et al. Journal of the European Ceramic Society, 2022, 42(13), 5953.
84 Wang C, Lin P P, Liu X, et al. Ceramics International, 2020, 46(1), 186.
85 Lu Y, Zhu M, Zhang Q, et al. Journal of the European Ceramic Society, 2020, 40(4), 1496.
86 Wang L, Fan S W, Yang S B, et al. Ceramics International, 2021, 47(12), 16603.
87 Guo C H, Zhu W W, Shen Y X, et al. Journal of the European Ceramic Society, 2020, 40(15), 5819.
88 Zhu W W, Chen Y Y, Zou H H, et al. Journal of the European Ceramic Society, 2022, 42(6), 2994.
89 Niu W H, Chen Q Q, Lin P P, et al. Ceramics International, 2020, 46(5), 5575.
90 Dohler F, Zscheckel T, Kasch S, et al. Ceramics International, 2017, 43(5), 4302.
91 Luo Z H, Jiang D L, Zhang J X, et al. International Journal of Applied Ceramic Technology, 2012, 9(4), 742.
92 Zhang X J, Zhang X Y, Zhu B S, et al. Dental Materials Journal, 2012, 31(6), 903.
93 Tao X, Wang X, Li X, Nano Letters, 2007, 7(10), 3172.
94 Zhang J, Huang Y, Lin J, et al. The Journal of Physical Chemistry B, 2005, 109(27), 13060.
95 Du W F, Kuraoka K, Akai T, et al. Journal of Materials Science, 2000, 35(19).
96 Ahmad S, Ludwig T, Herrmann M, et al. Journal of the European Ceramic Society, 2014, 34(15), 3835.
97 Deng Y B, Shirvan K, Wu Y W, et al. Journal of Nuclear Materials, 2018, 507, 24.
98 Deng J L, Zheng B H, Hu K Y, et al. Ceramics International, 2019, 45(7), 8890.
99 Kerbart G, Harnois C, Marinel S, et al. Scripta Materialia, 2021, 203, 5.
100 Boulesteix R, Goldstein A, Perriere C, et al. Journal of the European Ceramic Society, 2021, 41(3), 2085.
101 Kokabi D, Kaflou A, Welding in the World, 2021, 65(6), 1189.
102 Yeh J W, Chen S K, Lin S J, et al. Materials Science, 2004, 6.
103 Jasiewicz K, Cieslak J, Kaprzyk S, et al. Journal of Alloys and Compounds, 2015, 648, 307.
104 Zhang W R, Liaw P K, Zhang Y. Science China-Materials, 2018, 61(1), 2.
105 Dong K W, Kong J, Peng Y, et al. Journal of Materials Processing Technology, 2020, 283, 10.
106 Ji W, Wang W M, Wang H, et al. Intermetallics, 2015, 56, 24.
107 Nayan N, Singh G, Murty S, et al. Intermetallics, 2014, 55, 145.
108 Shaysultanov D, Stepanov N, Malopheyev S, et al. Materials Characterization, 2018, 145, 353.
109 Shivam V, Shadangi Y, Basu J, et al. Journal of Materials Research, 2020, 35(2), 215.
110 Zheng K, Zhang Q, Wang J, et al. Ceramics International, 2021, 47(2), 2758.
111 Liang Y Z, Dong K W, Yang Y, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2022, 854, 13.
112 Wang G, Yang Y L, He R J, et al. Journal of the European Ceramic Society, 2020, 40(9), 3391.
113 Wang G, Yang Y L, Wang M, et al. Journal of the European Ceramic Society, 2021, 41(1), 54.
114 Luo Z Y, Wang G, Zhao Y, et al. Ceramics International, 2022, 48(16), 23325.
115 Liu Y H, Wang G, Zhao Y, et al. Journal of the European Ceramic Society, 2022, 42(5), 1995.
116 Nai X, Chen H Y, Zhao S, et al. Materials Letters, 2022, 322, 5.
117 Dai X Y, Cao J, Liu J Q, et al. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2015, 646, 182.
118 Liu Y H, Hu J D, Zhang Y P, et al. Acta Metallurgica Sinica-English Letters, 2012, 25(2), 89.
119 Yu Y, He F, Qiao Z, et al. Journal of Alloys and Compounds, 2019, 775, 1376.
120 Průša F, Cabibbo M, Šenková A, et al. Journal of Alloys and Compounds, 2020, 835, 155308.
121 Luo Q C, Xue S B, Wu J. Crystals, 2021, 11(11), 19.
122 Luo Y, Li S, Pan W, et al. Materials Letters, 2004, 58(1), 150.
123 Zhou X B, Liu J W, Zou S R, et al. Journal of the European Ceramic Society, 2020, 40(2), 259.
124 Zhu J M, Fu H M, Zhang H F, et al. Materials Science and Engineering:A, 2010, 527(27), 7210.
125 Gottselig B, Gyarmati E, Naoumidis A, et al. Journal of the European Ceramic Society, 1990, 6(3), 153.
126 Zhou X, Liu Z, Li Y, et al. Ceramics International, 2018, 44(13), 15785.
127 Wang Y, Xia Y H, Yang Z W, et al. Ceramics International, 2018, 44(18), 22154.
128 Chen E G, Su X Q, Xue S B, et al. Materials Reports, 2024, 38(2), 161(in Chinese).
陈恩光, 苏新清, 薛松柏, 等. 材料导报, 2024, 38(2), 161.
129 Zhu Z B, Jiang L, Li Y H, et al. Materials Reports, 2024, 38(14), 217(in Chinese).
朱志彬, 蒋丽, 李艳辉, 等. 材料导报, 2024, 38(14), 217.
[1] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[2] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[3] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[4] 李宇, 王建敏, 张弦, 欧阳顺利. 高附加值煤气化渣基材料开发研究进展[J]. 材料导报, 2023, 37(23): 22040354-12.
[5] 乔瑞林, 龙伟民, 钟素娟, 廖志谦, 樊喜刚, 魏永强. 原位反应在钎焊中的应用[J]. 材料导报, 2023, 37(23): 22060183-8.
[6] 陈晨, 张亮, 王曦, 李木兰. Zn-Al系钎焊材料的研究进展[J]. 材料导报, 2023, 37(22): 22010081-13.
[7] 代一博, 罗兵兵, 房卫萍, 易耀勇, 胡永俊, 易朋. 高碳铬不锈钢电子束焊接头性能研究[J]. 材料导报, 2023, 37(17): 22040270-5.
[8] 薛海涛, 李涛, 郭卫兵, 陈翠欣, 赵江龙, 丁志杰. 钎焊参数对Al2O3陶瓷/304不锈钢接头组织和性能的影响[J]. 材料导报, 2023, 37(1): 21090089-5.
[9] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[10] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[11] 王文权, 王苏煜, 徐宇欣, 张新戈, 毕英超, 石磊. 胶接与钎焊铝蜂窝板力学性能研究[J]. 材料导报, 2022, 36(23): 21070282-6.
[12] 陈刚, 邓人钦, 薛伟, 孙瑜蔓, 田茂森, 唐啸天. 硬质合金与钢焊接的研究进展[J]. 材料导报, 2022, 36(22): 20120018-9.
[13] 于晓全, 樊丁, 黄健康. 焊丝成分对铝/钢电弧辅助激光熔钎焊接头组织及力学性能的影响[J]. 材料导报, 2022, 36(18): 21050207-5.
[14] 张健, 李鑫, 徐琦, 胡永乐, 毛聪, 张明军. 钎焊金刚石工具失效机理及其抑制策略研究进展[J]. 材料导报, 2022, 36(15): 20120220-7.
[15] 隋然, 刘禄, 林巧力. 冷金属过渡条件下4043铝合金分别在镀锌钢和镀锡钢表面的润湿行为[J]. 材料导报, 2022, 36(15): 21070041-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed