Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 22070227-12    https://doi.org/10.11896/cldb.22070227
  无机非金属及其复合材料 |
部分浸泡再生混凝土复合盐侵蚀微观特征与损伤演化
王家滨1,2,3,*, 车志豪1,3, 侯泽宇1, 范一杰1,3, 牛荻涛2
1 西安工业大学建筑工程学院,西安 710021
2 西部绿色建筑国家重点实验室(西安建筑科技大学),西安 710055
3 西安市军民两用土木工程测试技术与毁损分析重点实验室(西安工业大学),西安 710021
The Damage Evolution and Microstructure Characteristics of Partial Immersion Recycled Aggregate Concrete Subjected to Compound Salt
WANG Jiabin1,2,3,*, CHE Zhihao1,3, HOU Zeyu1, FAN Yijie1,3, NIU Ditao2
1 Civil & Architecture Engineering, Xi’an Technological University, Xi’an 710021, China
2 State Key Laboratory of Green Building in Western China (XAUAT), Xi’an 710055, China
3 Xi’an Key Laboratory of Civil Engineering Testing and Destruction Analysis on Military-Civil Dual Use Technology (XATU), Xi’an 710021, China
下载:  全 文 ( PDF ) ( 37868KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究部分掩埋、部分暴露于空气中的再生混凝土结构构件受复合盐侵蚀后的微观结构特征与耐久性损伤机制,以7.5%MgSO4-7.5%Na2SO4-5%NaCl(质量分数)复合盐溶液模拟西北地区区域土壤与地下水环境,采用部分浸泡法,开展再生混凝土复合盐侵蚀耐久性实验。测试表观形貌、质量、相对动弹性模量等宏观指标,研究再生混凝土复合盐侵蚀耐久性退化规律;采用X射线衍射、红外光谱及综合热分析法,表征侵蚀再生混凝土的物相组成及其含量,分析部分浸泡再生混凝土复合盐侵蚀微观结构特征;使用扫描电镜与X射线能谱仪,观察侵蚀再生混凝土的微观形貌与微区元素组成,揭示部分浸泡再生混凝土复合盐的侵蚀损伤演化机制。结果表明:相对动弹性模量沿试件高度变化明显,区域3—6相对动弹性模量相对稳定,区域7—8降至最低后快速上升,在区域11—12回归至100%。部分浸泡再生混凝土由下至上分为毛细孔饱和区、气-液两相界面区、水分传输区和干燥区。随着浸泡时间延长,毛细孔饱和区侵蚀方式从化学侵蚀转变为以化学侵蚀为主,兼具物理破坏;气-液两相界面区损伤由化学侵蚀-物理破坏共同控制变为以物理破坏为主,兼具化学侵蚀;水分传输区由无损伤向化学侵蚀-物理破坏共同作用过渡。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王家滨
车志豪
侯泽宇
范一杰
牛荻涛
关键词:  再生混凝土  复合盐侵蚀  部分浸泡  微观特征  损伤机制    
Abstract: Aim to investigate the microstructure characteristics and damage evolution of recycled aggregate concrete (RAC) construction members which were partially buried in soil and partially exposed air, the partial immersion experiment was developed as the compound salt solution of 7.5%MgSO4, 7.5%Na2SO4, and 5%NaCl (mass ratio), to simulate the service environment of the soil and underground water in Northwest China. The durability degradation law of partial immersion RAC was studied by testing the visual appearance, mass, and relative dynamic elastic modulus (RDEM). After that, the microstructure characteristics of RAC exposed to the compound salt solution were analyzed based on the mineral composition and its relative weight using XRD, FTIR, and TG methods. Moreover, SEM and EDS revealed the damaged mechanism for observation of the microstructure and the element compositions of the interesting zone. Results showed that the RDEM changed along the RAC specimen’s height. The varying of the RDEM of the testing area range of 3—6 was relatively stable. Afterward, the values decreased to the lowest at the testing area range of 7—8 and then rose to 100% rapidly at the testing area range of 11—12. The four exposure regions, namely, capillary saturation zone, liquid-gas two-phase interface zone, moisture transport zone, and dry zone, were distributed from bottom to up for the partial-immersion RAC. With an increase in the immersion day, the corrosion mechanism of the capillary saturation zone changed from chemical attack to chemical attack with physical damage. The damage faction of liquid-gas two-phase interface zone became from chemical attack-physical damage to chemical attack with physical damage. The moisture transport zone’s damage mode was specially transited from non-damaged to chemical attack-physical damage.
Key words:  recycled aggregate concrete    compound sale attack    partial immersion    microstructure characteristics    damage evolution
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51908440);陕西省自然科学基金(2024JC-YBMC-268);西部绿色建筑国家重点实验室开放基金项目(LSKF202216)
通讯作者:  *王家滨,西安工业大学建筑工程学院副教授。2012年硕士毕业于西安建筑科技大学材料科学与工程学院,2017年博士毕业于西安建筑科技大学土木工程学院。主要从事混凝土结构耐久性相关方面的研究。主持/参与国家自然科学基金和省部级项目7项,获陕西省优秀博士学位论文,发表学术论文30余篇。wangjiabin@xatu.edu.cn.   
引用本文:    
王家滨, 车志豪, 侯泽宇, 范一杰, 牛荻涛. 部分浸泡再生混凝土复合盐侵蚀微观特征与损伤演化[J]. 材料导报, 2024, 38(16): 22070227-12.
WANG Jiabin, CHE Zhihao, HOU Zeyu, FAN Yijie, NIU Ditao. The Damage Evolution and Microstructure Characteristics of Partial Immersion Recycled Aggregate Concrete Subjected to Compound Salt. Materials Reports, 2024, 38(16): 22070227-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22070227  或          http://www.mater-rep.com/CN/Y2024/V38/I16/22070227
1 Wang C, Xiao J, Zhang C, et al. Engineering Structure, 2020, 205, 110102
2 Xu J, Chen Z, Xue J, et al. Procedia Engineering, 2017, 210, 109.
3 Tang Y, Xiao J, Zhang H, et al. Construction and Building Materials, 2022, 323, 126546.
4 Ma K, Xie Y, Liu Y, et al. Corrosion & Protection, 2008, 29(9), 530(in Chinese).
马昆林, 谢友均, 刘运华, 等. 腐蚀与防护, 2008, 29(9), 530.
5 Sakr M R, Bassuoni M T. Cement and Concrete Research, 2021, 141, 106324.
6 ZhangY, Hua Y, Zhu X. Journal of Cleaner Production, 2022, 331, 130022.
7 Wang, J, Niu D. Materials Reports, 2019, 33(10), 3426(in Chinese).
王家滨, 牛荻涛. 材料导报, 2019, 33(10), 3426.
8 Zhutovsky S, Hooton R D. Construction and Building Materials, 2017, 145, 98.
9 Liu Z, Pei M, Zhang F, et al. Journal of Building Materials, 2020, 23(3), 485(in Chinese).
刘赞群, 裴敏, 张丰燕, 等. 建筑材料学报, 2020, 23(3), 485.
10 Liu Z, Pei M, Liu H, et al. Journal of Building Materials, 2020, 23(4), 787(in Chinese).
刘赞群, 裴敏, 刘厚, 等. 建筑材料学报, 2020, 23(4), 787.
11 Xie F, Li J, Zhao G, et al. Construction and Building Materials, 2020, 253, 119144.
12 Mohammed H. A, Raid S. A, Hossein M, et al. Construction and Building Materials, 2019, 229, 116920.
13 Jiang X, Mu S, Yang Z, at al. Construction and Building Materials, 2021, 266, 120936.
14 Ma K, Xie Y, Long G, et al. Journal of Central South University (Science and Technology), 2010, 40(1), 303(in Chinese).
马昆林, 谢友均, 龙广成, 等. 中南大学学报(自然科学版), 2010, 41(1), 303.
15 Zhang Z, Zhou J, Yang J, et al. Construction and Building Materials, 2020, 260, 119932.
16 Zhang Z, Zhou J, Yang J, et al. Materials and Structures, 2020, 53, 104.
17 Liu Z, Hu W, Pei M, et al. Construction and Building Materials, 2018, 192, 167.
18 Du J, Tang Z, Li G, et al. Construction and Building Materials, 2019, 225, 611.
19 Wang J, Hou Z, Zhang K, et al. Materials Reports, 2022, 36(23), 21080171 (in Chinese).
王家滨, 侯泽宇, 张凯峰, 等. 材料导报, 2022, 36(23), 21080171.
20 Wang J, Hou Z, Zhang K, et al. Materials Reports, 2022, 36(12), 21060067 (in Chinese).
王家滨, 侯泽宇, 张凯峰, 等. 材料导报, 2022, 36(12), 21060067.
21 Luo Q, Bungey J H. Hydro-Science and Engineering, 1996(3), 264(in Chinese).
罗骐先, Bungey J H. 水利水运科学研究, 1996(3), 264.
22 Chen X, Lyu S, Zhang L, et al. Journal of Inorganic Materials, 2010, 25(2), 129(in Chinese).
陈雪刚, 吕双双, 张路, 等. 无机材料学报, 2010, 25(2), 129.
23 Song Q, Nie J, Wu D, at al. Construction and Building Materials, 2021, 285, 122955.
24 Xie N, Dang T, Shi X. Cement and Concrete Research, 2019, 120, 244.
25 Yang S. Science Technology and Engineering, 2018, 18(4), 143(in Chinese).
杨淑雁. 科学技术与工程, 2018, 18(4), 143.
26 Zhang S, Zuo X, Tang Y, et al. Journal of the Chinese Ceramic Society, 2019, 47(2), 184(in Chinese).
张林松, 左晓宝, 汤玉娟, 等. 硅酸盐学报, 2019, 47(2), 184.
27 Weerdt K D, Justnes H. Cement and Concrete Composites, 2015, 55, 215.
28 Xie F, Li J, Zhao G, et al. Construction and Building Materials, 2021, 297, 123771.
29 Ellina B, Barbara L, Christophe C, et al. Cement and Concrete Research, 2019, 116, 309.
30 Dominik N, Kasper E, Emilie L, et al. Cement and Concrete Research, 2016, 79, 323.
31 Yang N, Yue W. The handbook of inorganic metalloid materials atlas, Wuhan University of Technology Press, China, 2000 (in Chinese).
杨南如, 岳文海. 无机非金属材料图谱手册, 武汉工业大学出版社, 2000.
32 Gou S, Nai X, Xiao J, et al. Journal of Inorganic Materials, 2019, 34(7), 781(in Chinese).
苟生莲, 乃学瑛, 肖剑飞, 等. 无机材料学报, 2019, 34(7), 781.
33 Du J, Liu Z, Sun J, et al. Construction and Building Materials, 2022, 322, 126370.
34 Brown P W, Badger S. Cement and Concrete Research, 2000, 30, 1535.
35 Groege W. Cement and Concrete Research, 2004, 34, 1613.
36 Gao S, Guo J, Gong Y. Case Studies in Construction Materials, 2022, 16, e01034.
37 Niels T, Sadananda S. Materials Characterization, 2004, 53, 123.
38 Zhu J, Gao J, Chen F, et al. Journal of Southeast University (Natural Science Edition), 2019, 49(5), 964(in Chinese).
朱健健, 高建明, 陈菲, 等. 东南大学学报(自然科学版), 2019, 49(5), 964.
[1] 都思哲, 张淼, 张玉, Selyutina Nina, Smirnov Ivan, 马树娟, 董晓强, 刘元珍. 基于CT图像三维重建的高温下再生混凝土孔隙特征研究[J]. 材料导报, 2024, 38(5): 22060128-11.
[2] 关虓, 龙行, 丁莎, 张鹏鑫. 煤矸石粉混凝土冻融损伤模型与劣化机制[J]. 材料导报, 2024, 38(16): 22080144-9.
[3] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[4] 齐云鹏, 王秋生, 秦力, 商效瑀. MU10再生混凝土承重砌块力学性能与抗冻性试验研究[J]. 材料导报, 2024, 38(11): 22070011-7.
[5] 王家滨, 范一杰, 牛荻涛, 王宇, 张凯峰. 部分浸泡再生混凝土Mg2+-SO42--Cl-复合盐侵蚀耐久性损伤特征与机制[J]. 材料导报, 2024, 38(1): 22060026-13.
[6] 李北星, 陈鹏博, 殷实, 易浩. 附加用水量对再生砂混凝土工作性和力学性能的影响[J]. 材料导报, 2024, 38(1): 22070217-7.
[7] 冯春花, 崔卜文, 郭晖, 张文艳, 朱建平. 水泥浆-碳化协同增强再生混凝土骨料研究[J]. 材料导报, 2023, 37(21): 22060098-5.
[8] 刘新宇, 刘惠, 王新杰, 朱平华, 陈春红, 周心磊. 氧化石墨烯改性地聚物再生混凝土的抗硫酸溶蚀性能研究[J]. 材料导报, 2023, 37(21): 22010212-6.
[9] 林一柯, 何廷树, 达永琪. 自磨改性对再生粗骨料及再生混凝土性能的影响[J]. 材料导报, 2023, 37(16): 22020144-6.
[10] 朱丽华, 刘海林, 韩伟. 基于细观尺度的再生混凝土多相导热系数理论模型[J]. 材料导报, 2023, 37(12): 21110080-7.
[11] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[12] 陈宇良, 张绍松, 徐金俊, 叶培欢, 姜锐. 压剪作用下PVA纤维再生混凝土力学性能试验研究[J]. 材料导报, 2023, 37(11): 21090102-7.
[13] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[14] 徐福卫, 田斌, 徐港. 界面过渡区厚度对再生混凝土损伤性能的影响分析[J]. 材料导报, 2022, 36(4): 20100200-7.
[15] 王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed