Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23010061-8    https://doi.org/10.11896/cldb.23010061
  无机非金属及其复合材料 |
用于泡沫混凝土制备的静态混合器模拟研究
郑伍魁, 赵悦瑶, 王雅晨, 李辉*
西安建筑科技大学材料科学与工程学院,西安 710055
Simulation Study on Static Mixer for Foamed Concrete Preparation
ZHENG Wukui, ZHAO Yueyao, WANG Yachen, LI Hui*
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 11321KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 泡沫混凝土作为新兴的轻质绿色建材近10年来发展迅速,具有广阔的应用前景。在泡沫混凝土的制备工艺中,浆体搅拌与泡沫混合环节是决定泡沫混凝土性能的关键因素。但“重发泡,轻混泡”的问题长久存在,混泡工艺的理论研究和设备发展都有所欠缺。因此,设计一种符合泡沫混凝土物料性能,能够实现连续化高效生产的专用混合器非常必要。本工作综合考虑混合器的特性,选用静态混合器作为泡沫混凝土的混合装置,采用数值模拟的方法对泡沫浆体混合过程进行仿真计算,建立不同结构参数下的静态混合器三维实体模型,分别通过仿真模拟研究元件个数、管道内径、元件夹角和加料口位置等不同参数对水泥浆体和泡沫混合情况的影响。结果表明,当元件的切割作用与流体分布垂直时,更有利于混合;混合器的管内径越小,混合速度越快,密度分布越均匀,但同时设备耗能更高;元件数量与最终产品的混合效果呈正相关;加料管口与混合元件的距离越小,越有利于均匀混合。综上所述,在θ=90°、D=60 mm、n=10、L=20 mm的条件下,最终可以制备出混合均匀、密度为1 400 kg/m3的泡沫混凝土。本研究可为新型泡沫混凝土混合装置的研发提供参考和支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑伍魁
赵悦瑶
王雅晨
李辉
关键词:  静态混合器  泡沫混凝土  数值模拟  多相流动    
Abstract: As an emerging lightweight green building material, foamed concrete has developed rapidly in the past ten years, and has a relatively wide application prospect. In the preparation process of foamed concrete, the mixing of slurry and foam is the key to determine the product performance. However, there are too much attention paid to the foaming process, but not to the mixing process, thus the theoretical research and equipment development of the mixing process are lacking. Therefore, it is necessary to create a special mixer that meets the performance of foamed concrete materials and realizes continuous and efficient production. Considering the characteristics of mixers comprehensively, static mixer has been researched in this work. The numerical simulation was carried out for the mixing process of foam slurry, and a three-dimensional model was established. By simulating the mixing of cement slurry and foam with different parameters, the number of components, the inner diameter of the pipe, the angle of the components and the position of the feeding port were studied respectively. The results showed that when the cutting action of the components is perpendicular to the fluid distribution, the more conducive to mixing; the smaller the inner diameter of the mixer tube, the faster the mixing speed, the more uniform of the density distribution, but simultaneously, the energy consumption of the equipment is higher. The number of components is positively related to the mixing effect of the final product. The smaller the distance between the feeding port and the mixing element, the better for uniform mixing. To sum up, under the optimal conditions of θ=90°, D=60 mm, n=10, L=20 mm, foamed concrete with uniform mixing and density of 1 400 kg/m3 can be finally prepared. This research provides the theoretical support for the research and development of a new type mixing device for foamed concrete.
Key words:  static mixer    foamed concrete    numerical simulation    multiphase flow
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  TU5  
基金资助: 国家重点研发计划(2021YFB3802000;2021YFB3802002)
通讯作者:  * 李辉,西安建筑科技大学材料科学与工程学院教授、博士研究生导师,现任材料科学与工程学院院长。1994年7月于西安建筑科技大学获学士学位;1997年6月于西安建筑科技大学获硕士学位;2009年7月于西安建筑科技大学获博士学位。目前主要从事材料科学与工程(工程方向)、固体废物资源化利用、生态材料低碳制备的研究工作。近年来发表论文100余篇,其中SCI收录16篇,EI收录9篇,ESI高被引论文2篇、热点论文1篇。参与编著出版的教材、专著4部。获准国家发明专利13项,实用新型专利8件。sunshine_lihui@126.com   
作者简介:  郑伍魁,2012年9月、2008年12月、2006年7月分别于图尔库大学、拉彭兰塔理工大学和天津大学获得博士学位、硕士学位和学士学位。现为西安建筑科技大学材料科学与工程学院副教授。长期从事固体废物资源化、粉体材料制备与成型以及面向未来的建筑材料等相关领域的教学与科学研究工作。近年来发表论文10余篇,获准授权国家发明专利多件。
引用本文:    
郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
ZHENG Wukui, ZHAO Yueyao, WANG Yachen, LI Hui. Simulation Study on Static Mixer for Foamed Concrete Preparation. Materials Reports, 2024, 38(15): 23010061-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010061  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23010061
1 Lei D Y, Liu C K, Liu J X, et al. Materials Reports, 2024, 38(14), 117 (in Chinese).
雷东移, 刘承侃, 刘佳鑫, 等. 材料导报, 2024, 38(14), 117.
2 Li H R, Geng F, Zhuo Y W, et al. Low Temperature Architecture Technology, 2013, 35(10), 1 (in Chinese).
李浩然, 耿飞, 卓跃武, 等. 低温建筑技术, 2013, 35(10), 1.
3 Tian Z, Chen J X, Ge J C. Machinery Design & Manufacture, 2016(5), 14 (in Chinese).
田壮, 陈金祥, 葛金翠. 机械设计与制造, 2016(5), 14.
4 Zheng S X. Chemical Production and Technology, 2000(2), 33 (in Chinese).
郑四仙. 化工生产与技术, 2000(2), 33.
5 Li C X. Energy Conservation, 1995(2), 17 (in Chinese).
李纯煦. 节能, 1995(2), 17.
6 Lu Z M, Xu B. Chemical Engineering(China), 1994(5), 59 (in Chinese).
陆振民, 徐斌. 化学工程, 1994(5), 59.
7 Yu Y F, Wu J H, Meng H B. Machinery Design & Manufacture, 2007(5), 211 (in Chinese).
禹言芳, 吴剑华, 孟辉波. 机械设计与制造, 2007(5), 211.
8 Yu Y F, Liu H C, Meng H B, et al. CIESC Journal, 2022, 73(8), 3565 (in Chinese).
禹言芳, 刘桓辰, 孟辉波, 等. 化工学报, 2022, 73(8), 3565.
9 Meng H B, Wu J H, Yu Y F. Chemical Engineering(China), 2009, 37(4), 23 (in Chinese).
孟辉波, 吴剑华, 禹言芳, 等. 化学工程, 2009, 37(4), 23.
10 Putra R A. Angkasa, Jurnal Ilmiah Bidang Teknologi, 2020, 2(2), 117.
11 Kim Y, Nematollahi O, Kim H D, et al. Journal of Visualization, 2021, 24(4), 671.
12 Cai Y J. Liaoning Chemical Industry, 2005(10), 445 (in Chinese).
蔡援建. 辽宁化工, 2005(10), 445.
13 Wang X Q, Cheng Z K, Ma Y J, et al. Contemporary Chemical Industry, 2020, 49(6), 1146 (in Chinese).
王小强, 程中克, 马艳捷, 等. 当代化工, 2020, 49(6), 1146.
14 Zhang Y. Hangzhou Chemical Industry, 2005, 35(1), 33 (in Chinese).
张奕. 杭州化工, 2005, 35(1), 33.
15 Meng J J. Global Alcinfo, 2012(3), 43 (in Chinese).
孟建军. 啤酒科技, 2012(3), 43.
16 Weng X Y. Design and application research of liquid-liquid two-phase flow mixer used in the treatment of acetic acid wastewater. Master’s Thesis, Changzhou University, China, 2021 (in Chinese).
翁祥宇. 用于醋酸废水处理的液液两相流混合器的设计及应用研究. 硕士学位论文, 常州大学, 2021.
17 Zhang G F, Zhang Q, Zhang M L. China Petroleum Machinery, 2015, 43(11), 92 (in Chinese).
张国锋, 张琴, 张慢来, 等. 石油机械, 2015, 43(11), 92.
18 Zhou G, Liu T, Huang Y Q. Oil-Gas Field Surface Engineering, 2017, 36(7), 90 (in Chinese).
周钢, 刘涛, 黄延强. 油气田地面工程, 2017, 36(7), 90.
19 Zhu C, Qin B, Lu Y, et al. Journal of Chemical Engineering of Japan, 2016, 49(6), 503.
20 Tian Z. Study on numerical simulation and quality control of foam concrete mixing process. Master’s Thesis, Southwest University of Science and Technology, China, 2016 (in Chinese).
田壮. 泡沫混凝土混泡过程数值模拟及质量控制研究. 硕士学位论文, 西南科技大学, 2016.
21 中华人民共和国工业和信息化部. 静态混合器, JB/T 7660-1995, 中华人民共和国工业和信息化部, 1996.
22 彭钧. 静态混合器的设置, HGT2057020-95, 1995.
23 Ou G F, Zheng Z J, Jin H Z. Journal of Chemical Engineering of Chinese Universities, 2016, 30(1), 40 (in Chinese).
偶国富, 郑智剑, 金浩哲. 高校化学工程学报, 2016, 30(1), 40.
24 Chen Jianguo. In:International Conference on Materials for Renewable Energy & Environment. Shanghai, China, 2011, pp.1820.
25 Pei K K. Chemical and Pharmaceutical Engineering, 2021, 42(2), 7 (in Chinese).
裴凯凯. 化工与医药工程, 2021, 42(2), 7.
26 Xu J X. Research on evaluation methods and applications of stirring and mixing effects in multiphase systems. Ph. D. Thesis, Kunming University of Science and Technology, China, 2012 (in Chinese).
徐建新. 多相体系搅拌混合效果评价方法及其应用研究. 博士学位论文, 昆明理工大学, 2012.
[1] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[2] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[3] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[4] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[5] 雷东移, 刘承侃, 刘佳鑫, 丛波, 王光文, 张鹏, 李莹, 董玉玲, 李智鸿, 刘加平. 发泡水泥板的应用背景、现状及前景概述[J]. 材料导报, 2024, 38(14): 22120059-9.
[6] 王述红, 贡藩, 尹宏, 修占国. 聚酯纤维泡沫混凝土力学性能及孔结构研究[J]. 材料导报, 2024, 38(1): 22060231-8.
[7] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[8] 朱雪伟, 王海斗, 刘明, 朴钟宇. 等离子熔覆数值模拟研究现状[J]. 材料导报, 2023, 37(7): 21040228-9.
[9] 王群, 李晨宇, 周忠华, 曹文, 周子吉, 孙慧慧, 黄悦, 沈志奇. 化学钢化前后玻璃表面裂纹扩展的实验比较与数值模拟[J]. 材料导报, 2023, 37(5): 21050255-5.
[10] 李舒玥, 傅广, 李泓历, 彭庆国, 肖华强, 张钧星, 张泽华. 激光选区熔化增材制造吸收率的研究进展[J]. 材料导报, 2023, 37(24): 22040104-10.
[11] 刘奎周, 张建仁, 田湘, 黄敦文, 彭晖. 利用H2O2发泡和碳化养护改善RMFC的固碳、力学和保温隔热性能[J]. 材料导报, 2023, 37(23): 22070288-8.
[12] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[13] 易家俊, 左晓宝, 黎亮, 邹欲晓. 水泥水化过程的概率模型及其微结构演变的数值模拟[J]. 材料导报, 2023, 37(18): 22040014-7.
[14] 聂文, 许长炜, 彭慧天, 张少波. 矿井新型增润促凝喷雾降尘剂的研制与抑尘性能研究[J]. 材料导报, 2023, 37(15): 22030228-9.
[15] 王恒星, 秦芳诚, 齐会萍, 汪扬波, 王于金. 双金属层状构件界面结合的模拟与实验研究进展[J]. 材料导报, 2023, 37(14): 21120136-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed