Please wait a minute...
材料导报  2024, Vol. 38 Issue (11): 23090146-12    https://doi.org/10.11896/cldb.23090146
  金属与金属基复合材料 |
CoCrFeMnNi系高熵合金制备技术研究现状
曹炜鹏, 李杰*, 孙小斌, 吴凯迪, 万德成, 冯运莉
华北理工大学冶金与能源学院,河北 唐山 063210
Research Status of Preparation Technology of CoCrFeMnNi High-entropy Alloy
CAO Weipeng, LI Jie*, SUN Xiaobin, WU Kaidi, WAN Decheng, FENG Yunli
School of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, Hebei, China
下载:  全 文 ( PDF ) ( 47262KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 与传统合金的设计理念完全不同,高熵合金是由至少五种元素以等原子比或近等原子比组成的合金,并表现出许多传统合金所不具备的性能。其中,CoCrFeMnNi系高熵合金作为最早开发的高熵合金,引发了研究者的广泛关注。制备技术的发展对开发性能优异的高熵合金以及促进高熵合金的实际应用具有至关重要的作用。本文介绍了高熵合金主流制备技术的工作原理及特点,包括机械合金化、雾化法、熔铸法、粉末冶金、增材制造、磁控溅射和激光熔覆,并着重对不同方法制备的CoCrFeMnNi系合金的组织及性能进行了对比分析,最后在此基础上对高熵合金制备技术的未来发展进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹炜鹏
李杰
孙小斌
吴凯迪
万德成
冯运莉
关键词:  高熵合金  CoCrFeMnNi  制备技术  增材制造    
Abstract: Different from the design concept of traditional alloys, high-entropy alloys are composed of at least five elements at equal atomic ratios or nearly equal atomic ratios, and exhibit many properties that traditional alloys do not have. Among them, CoCrFeMnNi high-entropy alloy, as the first developed high-entropy alloy, has attracted wide attention from researchers. The development of preparation technology plays an important role in developing high-entropy alloys with excellent properties and promoting their practical applications. In this paper, the working principle and characteristics of the main preparation techniques of high entropy alloys are introduced, including mechanical alloying, powder atomization, mel-ting and casting, powder metallurgy, additive manufacturing, magnetron sputtering and laser cladding. The microstructure and properties of CoCrFeMnNi alloys prepared by different methods are compared and analyzed. Finally, on this basis, the future development of high-entropy alloy preparation technology is prospected.
Key words:  high-entropy alloys    CoCrFeMnNi    preparation technology    additive manufacturing
发布日期:  2024-06-25
ZTFLH:  TG139  
基金资助: 国家自然科学基金(51974134);河北省科技重大专项项目(21281008Z);唐山市应用基础研究项目(21130237C)
通讯作者:  *李杰,华北理工大学冶金与能源学院金属材料加工系副教授、硕士研究生导师。2014年于燕山大学取得材料学博士学位。目前主要从事金属材料的强化与韧化、新材料及材料微观结构设计等方面的研究。发表论文70余篇,其中SCI、EI等收录30篇;出版教材2部;授权国家发明专利6项。leijie@ncst.edu.cn   
作者简介:  曹炜鹏,2021年6月毕业于华北理工大学,获得工学学士学位。现为华北理工大学冶金与能源学院硕士研究生,在李杰老师的指导下进行研究。目前主要研究领域为亚稳高熵合金的强韧化。
引用本文:    
曹炜鹏, 李杰, 孙小斌, 吴凯迪, 万德成, 冯运莉. CoCrFeMnNi系高熵合金制备技术研究现状[J]. 材料导报, 2024, 38(11): 23090146-12.
CAO Weipeng, LI Jie, SUN Xiaobin, WU Kaidi, WAN Decheng, FENG Yunli. Research Status of Preparation Technology of CoCrFeMnNi High-entropy Alloy. Materials Reports, 2024, 38(11): 23090146-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23090146  或          http://www.mater-rep.com/CN/Y2024/V38/I11/23090146
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6(5), 299.
2 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science, 2014, 61, 1.
3 Zhou N X, Hu T, Huang J J, et al. Scripta Materialia, 2016, 124, 160.
4 Tsai K Y, Tsai M H, Yeh J W. Acta Materialia, 2013, 61(13), 4887.
5 He Q F, Wang J G, Chen H A, et al. Nature, 2022, 602(7896), 251.
6 Ranganathan S. Current Science, 2003, 85(10), 1404.
7 Gludovatz B, Hohenwarter A, Catoor D, et al Science, 2014, 345(6201), 1153.
8 Cantor B, Chang I T H, Knight P, et al. Materials Science and Enginee-ring: A, 2004, 375-377, 213.
9 Xiao J K, Tan H, Chen J, et al. Journal of Alloys and Compounds, 2020, 847, 156533.
10 Yang L, Ge H, Zhang J, et al. Journal of Materials Science & Technology, 2019, 35(3), 300.
11 Li Z M, Pradeep K G, Deng Y, et al. Nature, 2016, 534(7606), 227.
12 Ji W, Wang W, Wang H, et al. Intermetallics, 2015, 56, 24.
13 Bai Y, Jiang H, Yan K, et al. Journal of Materials Science & Technology, 2021, 92, 129.
14 Zhang Y, Koch C C, Ma S G, et al. High-entropy alloys: fundamentals and applications, Springer International Press, USA, 2016, pp. 151.
15 Chen Y X, Zhu S, Wang X M, et al. Journal of Materials Engineering, 2017, 45(11), 129 (in Chinese).
陈永星, 朱胜, 王晓明, 等. 材料工程, 2017, 45(11), 129.
16 Zhang Q, Zhang S S, Luo Y, et al. APL Materials, 2022, 10(7), 070701.
17 Joo S H, Kato H, Jang M J, et al. Journal of Alloys and Compounds, 2017, 698, 591.
18 Cui X J, Su X L, Liu Y, et al. Special Casting & Nonferrous Alloys, 2022, 42(4), 441 (in Chinese).
崔小杰, 苏新磊, 刘岩, 等. 特种铸造及有色合金, 2022, 42(4), 441.
19 Li Z M. Acta Materialia, 2019, 164, 400.
20 Chen J, Yao Z H, Wang X B, et al. Materials Chemistry and Physics, 2018, 210, 136.
21 Zheng H T, Chen R R, Qin G, et al. Journal of Alloys and Compounds, 2019, 787, 1023.
22 Peng Y B, Zhang W, Mei X L, et al. Materials Today Communications, 2020, 24, 101009.
23 Wu W J, Yu H C, Zhang S X. Journal of Chongqing University of Technology(Natural Science), 2023, 37(9), 295(in Chinese).
吴文静, 于贺春, 张素香. 重庆理工大学学报(自然科学), 2023, 37(9), 295.
24 Tan S Y, Liu X D, Huo W Y, et al. Surface Technology, 2019, 48(10), 157 (in Chinese).
谈淑咏, 刘晓东, 霍文燚, 等. 表面技术, 2019, 48(10), 157.
25 Du J L, Xu X, Zhang H M, et al. Surface and Coatings Technology, 2023, 470, 129821.
26 Li W, An J, Zhang L, et al. Materials Letters, 2023, 335, 133760.
27 Pan Y, Zhong X, Zhu Y A, et al. Materials Reports, 2022, 36(14), 33 (in Chinese).
潘冶, 钟旭, 朱银安, 等. 材料导报, 2022, 36(14), 33.
28 Sun C F, Li P P, Xi S Q, et al. Materials Science and Engineering: A, 2018, 728, 144.
29 Liang J T, Cheng K C, Chen S H, et al. Materials Research Express, 2020, 7(2), 026545.
30 Yao Y G, Huang Z N, Xie P F, et al. Science, 2018, 359(6383), 1489.
31 Mao A Q, Xiang H Z, Ran X Q, et al. Journal of Alloys and Compounds, 2019, 775, 1177.
32 Fogagnolo J B, Velasco F, Robert M H, et al. Materials Science and Engineering: A, 2003, 342(1), 131.
33 Benjamin J S, Volin T E. Metallurgical transactions, 1974, 5(8), 1929.
34 Wu N Q, Li Z Z. Materials Reports, 1997(6), 20 (in Chinese).
吴年强, 李志章. 材料导报, 1997(6), 20.
35 Shen L Y, Chen C Y, Li X G, et al. Rare Metal Materials and Enginee-ring, 2023, 52(4), 1369 (in Chinese).
沈鹭宇, 陈超越, 黎兴刚, 等. 稀有金属材料与工程, 2023, 52(4), 1369.
36 Zhang H, Hu Q, Zhang S M, et al. Materials Reports, 2018, 32(20), 3590 (in Chinese).
张昊, 胡强, 张少明, 等. 材料导报, 2018, 32(20), 3590.
37 Alshataif Y, Sivasankaran S, Al-Mufadi F, et al. Metals and Materials International, 2019, 26, 3.
38 Han C J, Fang Q H, Shi Y S, et al. Advanced Materials, 2020, 32(26), 1903855.
39 Zhou S C, Zhang P, Xue Y F, et al. Transactions of Nonferrous Metals Society of China, 2018, 28(5), 939.
40 Yim D, Jang M J, Bae J W, et al. Materials Chemistry and Physics, 2018, 210, 95.
41 Park T G, Lee S H, Lee B, et al. Archives of Metallurgy and Materials, 2018, 63(2).
42 Durejko T, Aniszewska J, Ziętala M, et al. Materials, 2018, 11(5), 843.
43 Hoeges S, Zwiren A, Schade C. Metal Powder Report, 2017, 72(2), 111.
44 Liu X R, Jiang S H, Lu J L, et al. Journal of Materials Science & Technology, 2022, 131, 177.
45 Hedya S, Mohamed L, Gaber G, et al. Transactions of Nonferrous Metals Society of China, 2022, 32(8), 2648.
46 Agrawal P, Thapliyal S, Nene S S, et al. Additive Manufacturing, 2020, 32, 101098.
47 Wang F J, Zhang Y, Chen G L, et al. Journal of Engineering Materials and Technology, 2009, 131(3), 034501.
48 Otto F, Dlouhý A, Somsen C, et al. Acta Materialia, 2013, 61(15), 5743.
49 Jiao Y, Liu D, Han T, et al. Hot Working Technology, 2021, 50(19), 31 (in Chinese).
焦勇, 刘娣, 韩彤, 等. 热加工工艺, 2021, 50(19), 31.
50 Yu S R, Zhang X P, He Z M, et al. Rare Metal Materials and Enginee-ring, 2004, 33(3), 246 (in Chinese).
于思荣, 张新平, 何镇明, 等. 稀有金属材料与工程, 2004, 33(3), 246.
51 Kubiak K, Szeliga D, Sieniawski J, et al. Handbook of crystal growth, Elsevier Press, Netherlands, 2015, pp. 413.
52 Rettenmayr M, Exner H E. Encyclopedia of materials: science and technology, Elsevier Press, Netherlands, 2001, pp. 2183.
53 Lam T N, Luo M Y, Kawasaki T, et al. Crystals, 2022, 12(2), 157
54 Zhao Y L, Huang N, Ru H Q, et al. Materials for Mechancial Enginee-ring, 2022, 46(11), 55 (in Chinese).
赵义亮, 黄楠, 茹红强, 等. 机械工程材料, 2022, 46(11), 55.
55 Wu M Y, Mi G B, Li P J, et al. Acta Physica Sinica, 2022, 71(19), 278 (in Chinese).
吴明宇, 弭光宝, 李培杰, 等. 物理学报, 2022, 71(19), 278.
56 Sun C F, Li P P, Xi S Q, et al. Materials Science and Engineering: A, 2018, 728, 144.
57 Zhang C, Liu J, Wang X H, et al. Rare Metal Materials and Enginee-ring, 2022, 51(7), 2673 (in Chinese).
张超, 刘杰, 王晓花, 等. 稀有金属材料与工程, 2022, 51(7), 2673.
58 Yang Y, Li X, Xu X D. Journal of Jilin University(Engineering and Technology Edition), 2017, 47(2), 552 (in Chinese).
杨悦, 李雪, 徐晓丹. 吉林大学学报(工学版), 2017, 47(2), 552.
59 Korkmaz M E, Waqar S, Garcia-Collado A, et al. Journal of Materials Research and Technology, 2022, 18, 384.
60 Ron T, Shirizly A, Aghion E. Materials, 2023, 16(6), 2454.
61 Liu Z Y, Zhao D D, Wang P, et al. Journal of Materials Science & Technology, 2022, 100, 224.
62 Torralba J M, Campos M. Metals, 2020, 10(5), 639.
63 Wang P, Huang P F, Ng F L, et al. Materials & Design, 2019, 168, 107576.
64 Chew Y, Bi G J, Zhu Z G, et al. Materials Science and Engineering: A, 2019, 744, 137.
65 He J Y, Liu W H, Wang H, et al. Acta Materialia, 2014, 62, 105.
66 Weng F, Zhu Z G, Ng F, et al. In: Advanced Laser Processing and Ma-nufacturing II. Beijing, 2018, pp. 32.
67 Yan X H, Li J S, Zhang W R, et al. Materials Chemistry and Physics, 2018, 210, 12.
68 Jia Z X, Chu Y P, Feng Y L, et al. Heat Treatment of Metals, 2020, 45(10), 17 (in Chinese).
贾智轩, 褚延朋, 冯运莉, 等. 金属热处理, 2020, 45(10), 17.
69 Ning Z D, Wang Y Q, Chen T T, et al. Rare Metal Materials and Engineering, 2022, 51(12), 4773 (in Chinese).
宁哲达, 王一晴, 陈天天, 等. 稀有金属材料与工程, 2022, 51(12), 4773.
70 Schwarz H, Uhlig T, Rösch N, et al. Coatings, 2021, 11(4), 468.
71 Chang C H, Yang C b, Sung C C, et al. Thin Solid Films, 2018, 668, 63.
72 He L X, Liu C H, Zhao S, et al. Surface and Coatings Technology, 2022, 441, 128532.
73 Luo P, Wang X B, Gong C Z, et al. China Surface Engineering, 2021, 34(5), 53 (in Chinese).
罗朋, 王晓波, 巩春志, 等. 中国表面工程, 2021, 34(5), 53.
74 Li Y, Zhang W Q. Surface Technology, 2023, 52(1), 56(in Chinese).
李岩, 张伟强. 表面技术, 2023, 52(1), 56.
75 Wang Z, Wang C, Zhao Y L, et al. International Journal of Plasticity, 2020, 131, 102726.
76 Arif Z U, Khalid M Y, Rehman E, et al. Journal of Manufacturing Processes, 2021, 68, 225.
77 Schopphoven T, Gasser A, Wissenbach K, et al. Journal of Laser Applications, 2016, 28(2), 022501.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[3] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[4] 董颖辉, 陈飞寰, 蔡召兵, 林广沛, 卢冰文, 张坡, 古乐. 激光熔覆MoNbTaVW难熔高熵合金涂层微动磨损性能[J]. 材料导报, 2024, 38(7): 22100174-6.
[5] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[6] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[7] 邱贺方, 侯笑晗, 郭晓辉, 崔帆帆, 侯根良, 张泽, 罗伟蓬, 袁晓静. 电弧增材制造薄壁件形状控制研究进展[J]. 材料导报, 2024, 38(6): 22080200-14.
[8] 黄留飞, 王小英, 孙耀宁, 陈亮, 王龙, 任聪聪, 杨晓珊, 王斗, 李晋锋. 激光熔化沉积AlxCoCrFeNi系高熵合金的组织与性能[J]. 材料导报, 2024, 38(6): 22090238-6.
[9] 柴媛欣, 邢飞, 李殿起, 史建军, 苗立国, 卞宏友, 闫成鑫. 金属材料激光增材制造路径规划研究现状与展望[J]. 材料导报, 2024, 38(4): 22060243-6.
[10] 张明晨, 郭瑞鹏, 张勇. 高熵硬质合金WC-AlCo0.4CrFeNi2.7的制备及表征[J]. 材料导报, 2024, 38(4): 22060288-6.
[11] 刘源, 寇浩南, 何怡清, 尤瑞昶, 张鑫, 滕居珩, 李尧, 张凤英. 增材制造316L不锈钢组织结构特征与硬化机理[J]. 材料导报, 2024, 38(3): 22060103-6.
[12] 易慧, 吴长军, 周琛, 刘亚, 陆晓旺, 苏旭平. Al-Cr-Fe-Mn-Ni高熵合金中的L21相的相稳定性及其性能研究[J]. 材料导报, 2024, 38(11): 23010014-9.
[13] 陈飞寰, 蔡召兵, 董颖辉, 林广沛, 张坡, 卢冰文, 古乐. 激光熔覆NbMoTaWV难熔高熵合金涂层的高温氧化行为[J]. 材料导报, 2024, 38(10): 22110117-8.
[14] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[15] 冯振宇, 张宏宇, 马佳威, 陈琨, 周良道, 沈培良, 陈向明. 晶体塑性有限元方法在增材制造金属材料力学性能研究中的应用[J]. 材料导报, 2024, 38(1): 22070235-10.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed