Please wait a minute...
材料导报  2023, Vol. 37 Issue (7): 22010168-10    https://doi.org/10.11896/cldb.22010168
  高分子与聚合物基复合材料 |
通过共混改性提升PEDOT:PSS热电性能的研究进展
赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜*
国防科技大学空天科学学院,长沙 410073
Research Progress on Improving Thermoelectric Performance of PEDOT:PSS by Blending Modification
ZHAO Wenshu, LIANG Gengyuan, LEI Bowen, HE Yonglyu, XIAO Ying, XING Suli, JIN Li, ZHANG Jianwei*
Department of Materials Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 11897KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 热电材料是一种可以直接将热能转化为电能的功能材料,基于热电材料的能源技术属于清洁能源技术。由于无机热电材料存在毒性大、脆性大、成本高等局限性,有机热电材料引起了人们的广泛关注。有机热电材料中,聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)凭借高导电、低导热等特性成为研究热点,但其综合性能仍未满足应用需求,因此研究者采用多种方法对PEDOT:PSS进行改性以提升其热电性能。本文主要介绍了利用离子液体、无机填料、碳纳米管和小分子试剂等与PEDOT:PSS共混改性以提升其热电性能的研究进展,最后总结了进一步提高PEDOT:PSS热电性能所面临的问题与未来的研究方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵文姝
梁耕源
雷博文
贺雍律
肖颖
邢素丽
靳力
张鉴炜
关键词:  PEDOT:PSS  离子液体  无机填料  碳纳米材料  小分子试剂    
Abstract: Thermoelectric material is a kind of functional materialthat can directly convert thermal energy into electrical energy. The energy technology based on thermoelectric material is a kind of clean energy technology. Due to the limitation of inorganic thermoelectric materials, namely toxicity, brittleness and high cost, organic thermoelectric materials have aroused widespread concern. Among them, poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has attracted lots of attention, for its high electrical conductivity and low thermal conductivity. However, its thermoelectric properties have not yet met the requirement for real applications. Thus, researchers have applied various methods to modify PEDOT:PSS to improve its thermoelectric performances. This paper mainly introduces the research progress of the modification of PEDOT:PSS with ionic liquids, inorganic fillers, carbon nano-materials and small molecular agents, with an aim to improve its thermoelectric properties. Potential research directions for PEDOT:PSS are also proposed.
Key words:  PEDOT:PSS    ionic liquids    inorganic filler    carbon nano-material    small molecular agent
出版日期:  2023-04-10      发布日期:  2023-04-07
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51803236)
通讯作者:  * 张鉴炜,博士,洪堡学者,国防科技大学空天科学学院副教授。2007年南京大学材料物理专业本科毕业,2009年国防科技大学材料科学与工程专业硕士毕业,2014年国防科技大学材料科学与工程专业博士毕业后到国防科技大学工作至今。目前主要从事碳纳米材料及其复合材料、新型能源材料等方面的研究工作。获授权国家发明专利15项,发表论文50余篇,包括Small、Carbon、Composites Science and Technology、Chemical Enginee-ring Journal等。jianwei_zhang@nudt.edu.cn   
作者简介:  赵文姝,2019年6月于湘潭大学获工学学士学位。现为国防科技大学空天与科学学院硕士研究生,在张鉴炜副教授的指导下进行研究。目前主要研究领域为纳米复合材料。
引用本文:    
赵文姝, 梁耕源, 雷博文, 贺雍律, 肖颖, 邢素丽, 靳力, 张鉴炜. 通过共混改性提升PEDOT:PSS热电性能的研究进展[J]. 材料导报, 2023, 37(7): 22010168-10.
ZHAO Wenshu, LIANG Gengyuan, LEI Bowen, HE Yonglyu, XIAO Ying, XING Suli, JIN Li, ZHANG Jianwei. Research Progress on Improving Thermoelectric Performance of PEDOT:PSS by Blending Modification. Materials Reports, 2023, 37(7): 22010168-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010168  或          http://www.mater-rep.com/CN/Y2023/V37/I7/22010168
1 Bell L E. Science, 2008, 321(5895), 1457.
2 Sun Y, Xu W, Di C, et al. Synthetic Metals, 2017, 225, 22.
3 Famili M, Grace I M, AI-Galiby Q, et al. Advanced Functional Materials, 2018, 28(15), 1703135.
4 Bounioux C, Díaz-Chao P, Campoy-Quiles M, et al. Energy & Environmental Science, 2013, 6(3), 918.
5 He J, Kanatzidis M G, Dravid V P. Materials Today, 2013, 16(5), 166.
6 Soni A, Shen Y, Yin M, et al. Nano letters, 2012, 12(8), 4305.
7 Zebarjadi M, Esfarjani K, Dresselhaus M S, et al. Energy & Environmental Science, 2012, 5(1), 5147.
8 Tan G, Zhao L D, Kanatzidis M G. Chemical Reviews, 2016, 116(19), 12123.
9 Chen G, Xu W, Zhu D. Journal of Materials Chemistry C, 2017, 5(18), 4350.
10 Bharti M, Singh A, Samanta S, et al. Progress in Materials Science, 2018, 93, 270.
11 Yao H, Fan Z, Cheng H, et al. Macromolecular Rapid Communications, 2018, 39(6), 1700727.
12 Zhou H, Chua M H, Zhu Q, et al. Composites Communications, 2021, 27, 100877.
13 Wang C, Chen F, Sun K, et al. Review of Scientific Instruments, 2018, 89(10), 101501.
14 He M, Ge J, Lin Z, et al. Energy & Environmental Science. 2012, 5(8), 8351.
15 Liang Z, Boland M J, Butrouna K, et al. Journal of Materials Chemistry A, 2017, 5(30), 15891.
16 Zhang T, Li K, Li C, et al. Advanced Electronic Materials, 2017, 3(4), 1600554.
17 He M, Qiu F, Lin Z. Energy& Environmental Science, 2013, 6(5), 1352.
18 Zhang K, Qiu J, Wang S. Nanoscale, 2016, 8(15), 8033.
19 Worfolk B J, Andrews S C, Park S, et al. Proceedings of the National Academy of Sciences, 2015, 112(46), 14138.
20 Ely F, Avellaneda C O, Paredez P, et al. Synthetic Metals, 2011, 161(19-20), 2129.
21 Li T C, Chang R C. International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1(4), 329.
22 Shi H, Liu C, Jiang Q, et al. Advanced Electronic Materials, 2015, 1(4), 1500017.
23 Zhu Z, Liu C, Jiang F, et al. Synthetic Metals, 2017, 225, 31.
24 Groenendaal L, Jonas F, Freitag D, et al. Advanced Materials, 2000, 12(7), 481.
25 Jiang F X, Xu J K, Lu B Y, et al. Chinese Physics Letters, 2008, 25(6), 2202.
26 Jiang F X, Liu C C, Xu J K. Science Bulletin, 2017, 62(19), 2063 (in Chinese).
蒋丰兴, 刘聪聪, 徐景坤. 科学通报, 2017, 62(19), 2063.
27 Döbbelin M, Marcilla R, Salsamendi M, et al. Chemistry of Materials, 2007, 19(9), 2147.
28 He X, Cheng H, Yue S, et al. Journal of Materials Chemistry A, 2020, 8(21), 10813.
29 Kee S, Kim N, Kim B S, et al. Advanced Materials, 2016, 28(39), 8625.
30 Kee S, Kim H, Paleti S H K, et al. Chemistry of Materials, 2019, 31(9), 3519.
31 Fan Z, Du D, Guan X, et al. Nano Energy, 2018, 51, 481.
32 Atoyo J, Burton M R, McGettrick J, et al. Polymers, 2020, 12(3), 559.
33 Li Q, Deng M, Zhang S, et al. Journal of Materials Chemistry C, 2019, 7(15), 4374.
34 Yun D, Jung J, Kim K, et al. Applied Surface Science, 2021, 553, 149584.
35 Luo J, Billep D, Waechtler T, et al. Journal of Materials Chemistry A, 2013, 1(26), 7576.
36 Wang Y, Zhu C, Pfattner R, et al. Science Advances, 2017, 3(3), e1602076.
37 Kim N, Lienemann S, Petsagkourakis I, et al. Nature Communications, 2020, 11(1), 1.
38 Ju H, Kim J. ACS Nano, 2016, 10(6), 5730.
39 Fan Z, Ouyang J. Advanced Electronic Materials, 2019, 5(11), 1800769.
40 Hicks L D, Dresselhaus M S. Physical Review B, 1993, 47(24), 16631.
41 Saxena N, Čorić M, Greppmair A, et al. Advanced Electronic Mate-rials, 2017, 3(8), 1700181.
42 Zhou J, Anjum D H, Chen L, et al. Journal of Materials Chemistry C, 2014, 2(46), 9903.
43 Kang S D, Snyder G J. Nature Materials, 2017, 16(2), 252.
44 Han S, Jiao F, Khan Z U, et al. Advanced Functional Materials, 2017, 27(44), 1703549.
45 Dong J, Gerlach D, Koutsogiannis P, et al. Advanced Electronic Mate-rials, 2021, 7(5), 2001284.
46 De Regt J M, Van Dijk J, Van Der Mullen J A M, et al. Journal of Physics D:Applied Physics, 1995, 28(1), 40.
47 Palomares J M, Kohut A, Galbács G, et al. Journal of Applied Physics, 2015, 118(23), 233305.
48 Vieira E M, Silva J P B, Veltruská K, et al. Nanotechnology, 2019, 30(43), 435502.
49 Lee W, Lee S, Kim H, et al. Chemical Engineering Journal, 2021, 415, 128935.
50 Shu Y, Xiong Z, Liu Y, et al. Flexible thermoelectric polymers and systems, Wiley 2022 Press, USA, 2022, pp. 163.
51 Deng W, Deng L, Li Z, et al. ACS Applied Materials & Interfaces, 2021, 13(10), 12131.
52 Yu C, Choi K, Yin L, et al. ACS Nano, 2011, 5(10), 7885.
53 Moriarty G P, De S, King P J, et al. Journal of Polymer Science Part B:Polymer Physics, 2013, 51(2), 119.
54 Chung S H, Kim D H, Kim H, et al. Materials Today Communications, 2020, 23, 100867.
55 Lee W, Kang Y H, Lee J Y, et al. RSC Advances, 2016, 6(58), 53339.
56 Song H, Liu C, Xu J, et al. RSC Advances, 2013, 3(44), 22065.
57 Moriarty G P, Wheeler J N, Yu C, et al. Carbon, 2012, 50(3), 885.
58 Zhang Z, Chen G, Wang H, et al. Chemistry-An Asian Journal, 2015, 10(1), 149.
59 Chen Q, Zabihi F, Eslamian M. Synthetic Metals, 2016, 222, 309.
60 Hilal M, Han J I. Synthetic Metals, 2018, 245, 276.
61 Du F P, Cao N N, Zhang Y F, et al. Scientific Reports, 2018, 8(1), 1.
62 Xiong J, Jiang F, Shi H, et al. ACS Applied Materials & Interfaces, 2015, 7(27), 14917.
63 Khasim S, Pasha A, Badi N, et al. RSC Advances, 2020, 10(18), 10526.
64 Adekoya G J, Sadiku R E, Ray S S. Macromolecular Materials and Engineering, 2021, 306(3), 2000716.
65 Van Reenen S, Scheepers M, Van De Ruit K, et al. Organic Electronics, 2014, 15(12), 3710.
66 Yong H K, Sachse C, Machala M L, et al. Advanced Functional Mate-rials, 2011, 21(6), 1076.
67 Ouyang J, Xu Q, Chu C, et al. Polymer, 2004, 45(25), 8443.
68 Crispin X, Jakobsson F, Crispin A, et al. Chemistry of Materials, 2006, 18(18), 4354.
69 Ouyang J, Chu C W, Chen F C, et al. Advanced Functional Materials, 2005, 15(2), 203.
70 Sankir N D. Circuit World, 2008, 34(4), 32.
71 Kim J Y, Jung J H, Lee D E, et al. Synthetic Metals, 2002, 126(2-3), 311.
72 Liu C, Lu B, Yan J, et al. Synthetic Metals, 2010, 160(23-24), 2481.
73 Wei Q, Mukaida M, Naitoh Y, et al. Advanced Materials, 2013, 25(20), 2831.
74 Na S I, Kim S S, Jo J, et al. Advanced Materials, 2008, 20(21), 4061.
75 Aleshin A, Kiebooms R, Menon R, et al. Synthetic Metals, 1997, 90(1), 61.
76 Sun K, Xia Y, Ouyang J. Solar Energy Materials & Solar Cells, 2012, 97, 89.
77 Alemu D, Wei H, Ho K, et al. Energy & Environmental Science, 2012, 5(11), 9662.
78 Wang C, Sun K, Fu J, et al. Advanced Sustainable Systems, 2018, 2(12), 1800085.
79 Zhang L, Yang K, Chen R, et al. Advanced Electronic Materials, 2020, 6(1), 1900648.
80 Wu F, Li P, Sun K, et al. Advanced Electronic Materials, 2017, 3(7), 1700047.
81 Xia Y, Sun K, Ouyang J. Advanced Materials, 2012, 24(18), 2436.
82 Kim J, Jang J G, Hong J, et al. Journal of Materials Science:Materials in Electronics, 2016, 27(6), 6122.
83 Yeon C, Yun S J, Lee K S, et al. Carbon, 2015, 83, 136.
84 Yeon C, Yun S J, Kim J, et al. Advanced Electronic Materials, 2015, 1(10), 1500121.
85 Yemata T A, Kyaw A K K, Zheng Y, et al. Polymer International, 2020, 69(1), 84.
86 Fan Z, Li P, Du D, et al. Advanced Energy Materials, 2017, 7(8), 1602116.
87 Yi C, Wilhite A, Zhang L, et al. ACS Applied Materials & Interfaces, 2015, 7(17), 8984.
88 Xia Y, Ouyang J. Journal of Materials Chemistry, 2011, 21(13), 4927.
89 Wang J, Cai K, Shen S. Organic Electronics, 2015, 17, 151.
90 Fan Z, Du D, Yu Z, et al. ACS Applied Materials & Interfaces, 2016, 8(35), 23204.
91 Paulraj I, Liang T, Yang T S, et al. ACS Applied Materials & Interfaces, 2021, 13(36), 42977.
92 Zhu Z, Liu C, Jiang Q, et al. Synthetic Metals, 2015, 209, 313.
93 Shu Y, Odunmbaku G O, He Y, et al. Applied Physics Letters, 2021, 118(10), 103902.
[1] 曹哲勇, 刘兴华, 郑静霞, 杨永珍, 刘旭光. 非线性光学碳点的调控及应用研究进展[J]. 材料导报, 2023, 37(7): 21060197-10.
[2] 常龙飞, 杨海林, 金珂, 沈锦杰, 朱子才, 胡颖. 基于PEDOT:PSS电极的柔性透明IPMC材料研究[J]. 材料导报, 2023, 37(6): 21060011-8.
[3] 王延杰, 赵世界, 盛俊杰, 汝杰, 赵春, 李树勇. MWCNT/Nafion/MWCNT复合材料的湿度传感性能研究[J]. 材料导报, 2022, 36(20): 21060183-9.
[4] 张尧, 毕恩兵, 茹鹏斌, 陈汉. 一种咪唑基离子液体钝化制备的高效反式钙钛矿太阳能电池[J]. 材料导报, 2022, 36(2): 21010190-6.
[5] 周海云, 何明基, 张磊, 王红强, 梁华彬, 杨健华, 钟新仙. 以Nafion和离子液体作为软模板合成聚苯胺及其在超级电容器中的应用[J]. 材料导报, 2022, 36(18): 21050119-6.
[6] 宋文琦, 霍文娟, 杨金腾, 罗晨, 訾帅, 刘玉坤, 历亚星, 钱立伟. 氨丙基咪唑离子液体修饰纤维素气凝胶吸附剂对刚果红的清除研究:高性能与吸附机理[J]. 材料导报, 2022, 36(12): 21030276-7.
[7] 邵丹, 王美玲, 陈志炎, 高亚军, 庞欢. 碳材料在色素电化学传感中的研究进展[J]. 材料导报, 2021, 35(z2): 22-27.
[8] 文世涛, 仲美娟, 尚莉莉, 田根林, 杨淑敏, 马建锋, 刘杏娥. 水热炭化法制备生物质基碳纳米材料研究进展[J]. 材料导报, 2021, 35(z2): 28-32.
[9] 陈定宁, 沈昊宇, 成瑾瑾, 胡美琴. “枣糕状”结构杂多酸离子液体负载磁性复合材料的制备及超声脱硫的催化性能[J]. 材料导报, 2021, 35(12): 12181-12189.
[10] 张超, 张利, 刘兴华, 陈琳, 杨永珍, 于世平. 碳纳米材料的抗菌性及在生物医学中的应用研究进展[J]. 材料导报, 2020, 34(Z1): 53-57.
[11] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[12] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[13] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[14] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[15] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed