Please wait a minute...
材料导报  2023, Vol. 37 Issue (6): 21060011-8    https://doi.org/10.11896/cldb.21060011
  高分子与聚合物基复合材料 |
基于PEDOT:PSS电极的柔性透明IPMC材料研究
常龙飞1,2, 杨海林1, 金珂1, 沈锦杰1, 朱子才3, 胡颖1,2,*
1 合肥工业大学工业与装备技术研究院航空结构件成形制造与装备安徽省重点实验室,合肥 230009
2 合肥工业大学先进功能材料与器件安徽省重点实验室,合肥 230009
3 西安交通大学机械工程学院,西安 710049
Study on Flexible Transparent IPMC Material Based on PEDOT:PSS Electrodes
CHANG Longfei1,2, YANG Hailin1, JIN Ke1, SHEN Jinjie1, ZHU Zicai3, HU Ying1,2,*
1 Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei 230009, China
2 Anhui Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei 230009, China
3 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
下载:  全 文 ( PDF ) ( 9476KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 透明柔性功能材料对于现代机械电子器件的发展至关重要。本工作通过结合溶液浇铸法和滚涂法探索了Nafion/IL基体膜、PEDOT:PSS电极的透明IPMC材料制备工艺,研究了其力电特性及电致动性能规律,并针对主要的制备工艺参数进行了正交优化,对Nafion/IL基体膜厚度、每侧PEDOT:PSS电极滚涂量、浸泡在IL中的热压时间以及糙化程度的影响水平进行了深入分析。根据正交优化参数制备的透明IPMC具有良好的光学透明性、电化学特性以及力学特性。本工作制备的透明IPMC在5 V电压作用下最大尖端位移峰-峰值可达11.824 mm,且具有高频响应特性,有效响应频率高达100 Hz。本工作对丰富IPMC制备工艺方法、推动IPMC材料在透明柔性电子器件领域的应用具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常龙飞
杨海林
金珂
沈锦杰
朱子才
胡颖
关键词:  透明IPMC  Nafion/IL膜  PEDOT:PSS  溶液浇铸法  滚涂  驱动性能    
Abstract: Transparent and flexible functional materials are crucial to the development of modern electro-mechanical devices. In this work, the preparation process of the transparent ionic polymer-metal composite (IPMC) with Nafion/IL substrate and PEDOT:PSS electrodes was explored by combining solution casting method and roll coating method. Furthermore, the electro-mechanical characteristics and electro-active properties of so-made IPMCs were investigated. Orthogonal optimization was carried out to evaluate the influence level of key parameters, including substrate thickness, electrode roll coating content on each side, hot pressing time immersed in IL and the degree of roughness. The transparent IPMC prepared according to the orthogonal optimization parameters showed nice optical transparency, electrochemical and mechanical properties. The maximum peak-to-peak tip displacement of our transparent IPMC can reach 11.824 mm; in addition, the samples can activate under voltage with frequency up to 100 Hz. The research is of great significance to expand the fabrication method of IPMC and promote the application of this mate-rial in the field of transparent flexible electronic devices.
Key words:  transparent IPMC    Nafion/IL membrane    PEDOT:PSS    solution casting    roll coating    drive performance
发布日期:  2023-03-27
ZTFLH:  TB381  
基金资助: 国家自然科学基金(52075140);中央高校基本科研业务费(PA2020GDSK0074)
通讯作者:  *胡颖,合肥工业大学研究员、博士研究生导师。2004年本科毕业于安徽大学,2007年硕士毕业于中国科学与技术大学,2012年博士毕业于中国科学院苏州纳米技术与纳米仿生研究所,2007—2016年在中国科学院苏州纳米技术与纳米仿生研究所工作,2016年调入合肥工业大学至今。主要研究方向为柔性智能材料与器件的基础与应用研究。已在国内外学术期刊发表论文40余篇,申请国家发明专利20余项,其中授权12项。先后主持国家自然科学基金面上项目和青年项目、安徽省杰出青年科学基金项目、江苏省自然科学基金等多个科研项目。huying@hfut.edu.cn   
作者简介:  常龙飞,合肥工业大学副研究员,爱沙尼亚塔尔图大学客座教授。2008年本科毕业于长安大学,2011年硕士毕业于西安交通大学,2015年博士毕业于西安交通大学,2013—2014年赴日本产业与技术综合研究所访问。主要研究方向包括智能材料与结构、凝聚态物理、软机械等。在Advanced Functional Materials、Smart Materials and Structures、Applied Phy-sics Letters、《机械工程学报》等国内外学术期刊上发表论文40余篇,申请发明专利20余项。主持国家自然科学基金面上项目和青年项目、中国博士后科学基金面上项目、安徽省自然科学基金青年项目、中央高校基本科研业务费等项目。
引用本文:    
常龙飞, 杨海林, 金珂, 沈锦杰, 朱子才, 胡颖. 基于PEDOT:PSS电极的柔性透明IPMC材料研究[J]. 材料导报, 2023, 37(6): 21060011-8.
CHANG Longfei, YANG Hailin, JIN Ke, SHEN Jinjie, ZHU Zicai, HU Ying. Study on Flexible Transparent IPMC Material Based on PEDOT:PSS Electrodes. Materials Reports, 2023, 37(6): 21060011-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21060011  或          http://www.mater-rep.com/CN/Y2023/V37/I6/21060011
1 Ja H, Dong C, Hyung J, et al. Advanced Function Materials, 2018, 28(35), 1801834.
2 Coskun S, Selen A, Emrah U. Nanotechnology, 2013, 24(12), 125202.
3 Rak-Hwan K, Myung-Ho B, Dae G, et al. Nano Letters, 2011, 11(9), 3881.
4 Lee H, Lee J, Huynh C, et al. Liquid Crystals, 2015, 42, 322.
5 Liu Y, Jung E, Wang Y, et al. Small, 2014, 10(5), 944.
6 Liu Y, Feng J, Zhang Y, et al. Organic Electronics, 2014, 15, 478.
7 Li L, Yu Z, Hu W, et al. Advanced Materials, 2011, 23(46), 5563.
8 Cai M, Tiong V, Hreid T, et al. Journal of Materials Chemistry A, 2015, 3, 2784.
9 Li Z, Liang Y, Zhong Z, et al. Synthetic Metals, 2015, 210, 363.
10 Morteza A, Aekachan P, Sangjun L, et al. ACS Nano, 2014, 8(5), 5154.
11 Chen B, Lu J, Yang C, et al. ACS Applied Materials & Interfaces, 2014, 6(10), 7840.
12 Liu Q, Liu Z, Li C, et al. Advanced Science, 2020, 7(10), 2000348.
13 My D, Ling Y, Lim W, et al. Advanced Function Materials, 2017, 27(25), 1700845.
14 Kaushik P, Vipin K, Wang J, et al. Advanced Materials, 2017, 29(37), 1702181.
15 Anuj R, Akshay K, Zhou C. Nanotechnology, 2011, 22, 245201.
16 Bu-Jong K, Jong-Seol P, Young-Jin H, et al. Thin Solid Films, 2015, 596, 68.
17 Mukai K, Asaka K, Kiyohara K, et al. Electrochimica Acta, 2008, 53(17), 5555.
18 Dang Z, Wang L, Wang H. Journal of Functional Materials, 2005, 36(7), 981(in Chinese).
党智敏, 王岚, 王海燕. 功能材料, 2005, 36(7), 981.
19 Ye Rim L, Hyungho K, Do Hoon L, et al. Soft Matter, 2017, 13, 6390.
20 Weng M, Chen L, Huang F, et al. Nanotechnology, 2020, 31(6), 065501.
21 Uikyum K, Junmo K, Choonghan L, et al. Nanotechnology, 2013, 24(14), 145501.
22 Samatham R, Kim K, Dogruer D, et al. Electroactive polymers for robotic applications. Springer London, London, 2007, pp.1.
23 Chen H, Zhu Z, Chang L, et al. Deformation mechanism and basic pro-perties of ionic polymer metal composites, Science Press, China, 2016 (in Chinese).
陈花玲, 朱子才, 常龙飞, 等. 离子聚合物-金属复合材料变形机理及其基本特性, 科学出版社, 2016.
24 Naohiro T. Sensors and Actuators B: Chemical, 2018, 257, 815.
25 Naohiro T. Langmuir, 2020, 36(22), 6154.
26 Jun K, Kim J, Oh I K. Small, 2018, 14(35), 1801603.
27 Kim B J, Park J S, Hwang Y J, et al. Thin Solid Films, 2015, 596, 68.
28 Kim R H, Bae M H, Kim D G, et al. Nano Letters, 2011, 11(9), 3881.
29 Li Z, Ying L, Zhong Z, et al. Synthetic Metals, 2015, 210, 363.
30 Zhu Z, Chang L, Takagi K, et al. Applied Physics Letters, 2014, 105(5), 054103.
31 Zhu Z. Study on the preparation and performance of ionic polymer-metal composite (IPMC). Master's Thesis, Xi'an Jiaotong University, China, 2008 (in Chinese).
朱子才. 离子聚合物-金属复合材料(IPMC)制备和性能研究. 硕士学位论文, 西安交通大学, 2008.
32 Yang Q. Effect of a new base film roughening process on the interface and properties of IPMC. Master's Thesis, Hefei University of Technology, China, 2019 (in Chinese).
杨倩. 一种新型基膜糙化工艺对IPMC界面及性能的影响. 硕士学位论文, 合肥工业大学, 2019.
33 Lang U, Dual J. Key Engineering Materials, 2007, 345-346, 1189.
[1] 李良, 赵修贤, 王彬彬, 杨帅军, 聂永, 蒋绪川. 热致变色过渡金属配合物的变色机理及应用[J]. 材料导报, 2023, 37(4): 21010049-11.
[2] 张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
[3] 赵明媚, 张进秋, 彭志召, 张建, 李欣. 剪切增稠液体理论基础和工程应用进展概述[J]. 材料导报, 2022, 36(9): 20070135-8.
[4] 宋牙牙, 黄艳斐, 郭伟玲, 邢志国, 王海斗, 吕振林, 张执南. 铌酸钾钠基无铅压电陶瓷掺杂改性的研究进展[J]. 材料导报, 2022, 36(5): 21030094-10.
[5] 李鹏, 杜艺博, 黄培炜, 丁瀛, 刘根柱. 基于无壁型微脉管的光能损伤自修复复合材料[J]. 材料导报, 2022, 36(2): 20090371-5.
[6] 张令坤, 孟俊行, 侯成义, 张青红, 李耀刚, 王宏志. 多刺激响应的MWCNTs-CS/AFP双层致动器:能量的转化与应用[J]. 材料导报, 2021, 35(20): 20155-20160.
[7] 李杰锋, 杨忠清. 形状记忆合金热力学经验本构模型的数值分析及修正[J]. 材料导报, 2021, 35(18): 18116-18123.
[8] 张䶮, 朱永乐, 黄丽娟, 王永安, 赵瑾, 聂志勇. 介孔二氧化硅门控开关在分析检测中的研究进展[J]. 材料导报, 2021, 35(15): 15081-15087.
[9] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[10] 秦红玲, 朱合法, 邢志国, 王海斗, 郭伟玲, 黄艳斐. 铁电膜层制备技术研究现状[J]. 材料导报, 2021, 35(1): 1112-1120.
[11] 王玉莲, 邸江涛, 李清文. 人工肌肉纤维的研究进展[J]. 材料导报, 2021, 35(1): 1183-1195.
[12] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[13] 李潘玉, 游世辉, 李维, 张圣东, 曾宪任, 柳彬. 磁流变弹性体磁致模量与磁粉颗粒复杂网络分形的关联性分析[J]. 材料导报, 2020, 34(Z2): 67-70.
[14] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[15] 李兴建, 白宝仕, 刘升, 苗玉杰, 郑朝晖, 丁小斌. 具有相分离结构的PMMA/PEG半互穿网络形状记忆高分子[J]. 材料导报, 2020, 34(2): 2142-2146.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed