Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22080136-9    https://doi.org/10.11896/cldb.22080136
  无机非金属及其复合材料 |
电子束辐照改善材料表面润湿性能的研究进展
王力1,2, 王海斗1,3,*, 底月兰2,*, 何东昱2, 黄艳斐2
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150090
2 陆军装甲兵学院装备再制造技术国防科技重点实验室,北京 100072
3 陆军装甲兵学院机械产品再制造国家工程研究中心,北京 100072
A Technological Review of the Use of Electron Beam Irradiation for Modifying Materials Surface Wettability
WANG Li1,2, WANG Haidou1,3,*, DI Yuelan2,*, HE Dongyu2, HUANG Yanfei2
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150090, China
2 Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Army Armored of Forces Academy, Beijing 100072, China
3 National Engineering Research Center for Remanufacturing, Army Armored of Forces Academy, Beijing 100072, China
下载:  全 文 ( PDF ) ( 9287KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子束辐照植入官能团具有均匀和可控修饰等优势,已经被广泛应用于改变表面能、改善材料表面润湿性能,但是关于电子束与材料表面相互作用以及改性表面润湿性能机制尚无明确的解释。因此本文主要针对电子束辐照改性材料表面性能进行研究,总结当前电子束与材料表面相互作用机制,发现电子束与材料表面相互作用主要有弹性相互作用和非弹性相互作用。当电子束能量超过材料损伤阈值时,电子束辐照会改变材料表面形貌,并且通过交联和接枝反应在聚合物之间产生新的化学键(如碳基、羟基和羧基等)或使材料表面形成氧化层,导致表面能的改变。电子束辐照改性表面的润湿性能与诸多因素有关,如电子能量、电子剂量、材料种类和复合工艺等。电子束辐照可以提高或者降低材料表面润湿性能,通过控制电子辐照参数,达到精确调整表面润湿性能的目的。电子束辐照作为一种简单、快速改善材料表面润湿性能的新工艺,复合其他工艺制备特殊功能的超疏水表面具有发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王力
王海斗
底月兰
何东昱
黄艳斐
关键词:  电子束辐照  表面自由能  润湿性能  复合工艺    
Abstract: Electron beam irradiation offers the advantages of uniformity and controllability over implanted functional groups. It has been widely used to change the surface energy and modify the surface wetting properties of materials. However, the mechanisms of interaction between the electron beam and material surface and the modification of the wettability have not been clearly elucidated. Accordingly, this work primarily focuses on the surface properties under electron beam irradiation. The mechanism is explained by elastic and inelastic interactions. When the electron beam energy exceeds the damage threshold of a material, electron beam irradiation changes the surface morphology of the material. The generation of new polar groups such as carbon, hydroxyl, and carboxyl groups between polymers or the formation of oxide layers on modified surfaces by cross-linking and grafting reactions leads to changes in the surface energy. The wettability modification of the surface under electron beam irradiation is attributed to many factors, such as the electron energy, electron dose, material type, and composite process. Electron beam irradiation can increase or decrease the surface wettability of the material, and can be precisely adjusted by controlling the electron irradiation parameters. Electron irradiation, as a novel process for the simple and rapid modification of the surface wettability, has a promising future in the preparation of hydrophobic surfaces with specific functions by an electron beam irradiation composite process.
Key words:  electron beam irradiation    surface free energy    wetting property    composite process
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  V261.6+2  
基金资助: 国家自然科学基金(52175207);国防科技领域基金项目
通讯作者:  * 王海斗,陆军装甲兵学院机械产品再制造国家工程研究中心主任,2003年博士毕业于清华大学机械工程系。目前的研究领域包括表面工程、再制造和摩擦学。已发500余篇论文。whaidou2021@163.com;底月兰,陆军装甲兵学院装备再制造技术国防科技重点实验室助理研究员,2013年博士毕业于陆军装甲兵学院,研究领域为表面工程与再制造工程,功能涂层表面改性方向。已发30余篇论文。dylxinjic031@163.com   
作者简介:  王力,2021年毕业于江西理工大学,获得硕士学位。现为哈尔滨工程大学博士研究生,主要研究方向为金属材料功能表面改性。
引用本文:    
王力, 王海斗, 底月兰, 何东昱, 黄艳斐. 电子束辐照改善材料表面润湿性能的研究进展[J]. 材料导报, 2023, 37(23): 22080136-9.
WANG Li, WANG Haidou, DI Yuelan, HE Dongyu, HUANG Yanfei. A Technological Review of the Use of Electron Beam Irradiation for Modifying Materials Surface Wettability. Materials Reports, 2023, 37(23): 22080136-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22080136  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22080136
1 Di Y, Qiu J, Wang G, et al. Langmuir, 2021, 37(23), 7078.
2 Qiu J, Chen S, Di Y, et al. Langmuir, 2021, 37(44), 13038.
3 Ensikat H J, Ditsche-Kuru P, Neinhuis C, et al. Beilstein Journal of Nanotechnology, 2011, 2(1), 152.
4 Guo Z, Liu W, Su B L. Journal of colloid interface science, 2011, 353(2), 335.
5 Liu T, Liu Y, Di Y L, et al. Surface Technology, 2020, 49(7), 112 (in Chinese).
刘韬, 刘莹, 底月兰, 等.表面技术, 2020, 49(7), 112.
6 Zhang P, Lv F. Energy, 2015, 82, 1068.
7 Lima A C, Mano J F. Nanomedicine, 2015, 10(2), 271.
8 Jeong H, Heo J, Son B, et al. ACS Applied Materials Interfaces, 2015, 7(47), 26117.
9 Cengiz U, Erbil H Y. Applied Surface Science, 2014, 292, 591.
10 Heinonen S, Huttunen-Saarivirta E, Nikkanen J-P, et al. Colloids Surfaces A: Physicochemical Engineering Aspects, 2014, 453, 149.
11 Taurino R, Fabbri E, Pospiech D, et al. Progress in Organic Coatings, 2014, 77(11), 1635.
12 Ovaskainen L, Chigome S, Birkin N A, et al. The Journal of Supercritical Fluids, 2014, 95, 610.
13 Jeong B Y, Jung E H, Kim J H. Applied Surface Science, 2014, 307, 28.
14 Liang J, Liu K, Wang D, et al. Applied Surface Science, 2015, 338, 126.
15 Rezaei S, Manoucheri I, Moradian R, et al. Chemical Engineering Journal, 2014, 252, 11.
16 Henry F, Renaux F, Coppée S, et al. Surface science, 2012, 606(23-24), 1825.
17 Jafari R, Menini R, Farzaneh M. Applied Surface Science, 2010, 257(5), 1540.
18 Kim H K, Cho Y S. Colloids Surfaces A: Physicochemical Engineering Aspects, 2015, 465, 77.
19 Gong D, Long J, Fan P, et al. Applied Surface Science, 2015, 331, 437.
20 Lan L, Di Y L,Wang H D, et al. Surface Technology, 2021, 50(12), 246 (in Chinese).
兰铃, 底月兰, 王海斗, 等.表面技术, 2021, 50(12), 246.
21 Zhen B Y, Di Y L,Wang H D, et al. Material Reprorts. 2020, 34(23), 23109 (in Chinese).
郑博源, 底月兰, 王海斗, 等.材料导报, 2020, 34(23), 23109.
22 Di Y L,Wang H D, Gu Y, et al. Surface Technology. 2019, 48(8), 231 (in Chinese).
底月兰, 王海斗, 顾颖, 等.表面技术, 2019, 48(8), 231.
23 Lan L, Di Y L, Wang H D, et al. Friction, 2023, 11(4), 524-.
24 Duan Z, Zhao Z, Luo D, et al. Applied Surface Science, 2016, 360, 1030.
25 Li Z, Duan G, Liu G, et al. Journal of Materials Research, 2014, 29(1), 115.
26 Bai G, Hornez J C, Maschke U, et al. Radiation Physics and Chemistry, 2020, 177, 109192.
27 Lunkwitz K, Lappan U, Lehmann D. Radiation Physics Chemistry, 2000, 57(3-6), 373.
28 Cazaux J, Lehuede P. Journal of Electron Spectroscopy Related Phenomena, 1992, 59(1), 49.
29 Alvarado A, Chang H Y, Nadvornick W, et al. Applied Surface Science, 2019, 478, 142.
30 Cazaux J. Journal of Electron Spectroscopy and Related Phenomena, 2010, 176(1-3), 58.
31 Sabharwal S. In: Proceedings of PAC2013. USA, 2013, pp. 745.
32 Lappan U, Geißler U, Scheler U. Macromolecular Materials Engineering, 2007, 292(5), 641.
33 Barylski A, Swinarew A S, Aniołek K, et al. Polymers (Basel), 2020, 12(8), 1676.
34 Xi Z Y, Xu Y Y, Zhu L P, et al. Journal of Membrane Science, 2009, 339(1-2), 33.
35 Kim M I, Park M S, Lee Y S. Carbon letters, 2016, 18, 56.
36 Shin H K, Jeun J P, Kang P H. Fibers Polymers, 2012, 13(6), 724.
37 S Hassan M, K Attia M, Attia R M. Journal of Industrial Textiles, 2022, 51(3), 4899S.
38 Devyatkov V, Koval N, Schanin P, et al. Laser Particle Beams, 2003, 21(2), 243.
39 Bloembergen N, Appleton B, Celler G. MRS Bulletin, 1982, 7(1), 4.
40 Goldstein J I, Newbury D E, Echlin P, et al. Electron-beam-specimen interactions. Scanning electron microscopy and X-ray microanalysis. Springer. 1981, pp. 53.
41 Liu J, Zou Z, Su B. High energy beam heat treatment, Mechanical Engineering Industry Press, Beijing, 1997, pp. 47.
42 Chen Y F, Zhang T, Tang M, et al. e-Polymers, 2017, 17(1), 23.
43 Głuszewski W, Stasiek A, Raszkowska-Kaczor A, et al. Nukleonika, 2018, 63.
44 Dias D B, Andrade E Silva L G D. Radiation Physics Chemistry, 2007, 76, 1696.
45 Wang H, Wen Y, Peng H, et al. Polymers (Basel), 2018, 10(5), 503.
46 Jinglong G, Zaochun N, Yanhui L. e-Polymers, 2016, 16(2), 111.
47 Żenkiewicz M. Journal of Achievements in Materials Manufacturing Engineering, 2007, 24(1), 137.
48 Fowkes F M. Industrial Engineering Chemistry, 1964, 56(12), 40.
49 Owens D K, Wendt R. Journal of Applied Polymer Science, 1969, 13(8), 1741.
50 Luner P E, Oh E J C. Colloids Surfaces A: Physicochemical Engineering Aspects, 2001, 181(1-3), 31.
51 Żenkiewicz M. Polimery, 2006, 51(7), 584.
52 Coqueret X. Obtaining high performance polymeric materials by irradiation, Radiation Chemistry,EDP Sciences, 2021, pp.131.
53 Oshima A, Ikeda S, Seguchi T, et al. Radiation Physics Chemistry, 1997, 49(2), 279.
54 Xu L, Hu J, Ma H, et al. Radiation Physics Chemistry, 2018, 145, 74.
55 Oshima A, Tabata Y, Kudoh H, et al. Radiation Physics and Chemistry, 1995, 45(2), 269.
56 Wang H, Wen Y, Peng H, et al. Polymers, 2018, 10(5), 503.
57 Moura E, Somessari E, Silveira C, et al. Radiation Physics Chemistry, 2011, 80(2), 175.
58 Lee E J, Kim J J, Cho S O. Langmuir, 2010, 26(5), 3024.
59 Goss B. International Journal of Adhesion Adhesives, 2002, 22(5), 405.
60 Bongiovanni R, Encyclopedia of Polymer Science Technology, 2002, 1-20.
61 Hota N, Karna N, Dubey K, et al. European Polymer Journal, 2019, 112, 754.
62 Raghavan J, Baillie M R. Polymer composites, 2000, 21(4), 619.
63 Sánchez-Cadena L E, Tersac G, Coqueret X, et al. Progress in Organic Coatings, 2019, 136, 105268.
64 Zhang J, Duan Y, Ming Y, et al. Polymers for Advanced Technologies, 2019, 30(1), 179.
65 Li Y, Xiong Z, Zhang M, et al. Cellulose, 2021, 28(18), 11579.
66 Jiang Z, Wang Y, Liu Y, et al. Fibers and Polymers, 2016, 17(7), 1013.
67 Barylski A, Aniołek K, Swinarew A S, et al. Polymers (Basel), 2020, 12(2), 306.
68 Krause B, Stephan M, Volkland S, et al. Journal of Applied Polymer Science, 2006, 99(1), 260.
69 Zhang S, Ding F, Wang Y, et al. Fibers Polymers, 2020, 21(5), 1023.
70 Qian H, Wang H, Fu J, et al. Journal of Radiation Research Radiation Processing, 2017, 35(2), 1.
71 Abdul-Kader A, Turos A, Jagielski J, et al. Vacuum, 2005, 78(2-4), 281.
72 Dong H, Bell T. Surface Coatings Technology, 1999, 111(1), 29.
73 Torchinsky I, Rosenman G. Applied Physics Letters, 2008, 92(5), 052903.
74 Abdul-Kader A M, Turos A, Radwan R M, et al. Applied Surface Science, 2009, 255(17), 7786.
75 Abdul-Kader A M. Journal of Nuclear Materials, 2013, 435(1-3), 231.
76 El-Saftawy A A, Abd El Aal S A, Ragheb M S, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 322, 48.
77 Lee H J, Park K, Kim B N. Journal of the Korean Society for Precision Engineering, 2016, 33(1), 45.
78 Jiang X, Chen Q, Rogachev A V, et al. Journal of Coating Science and Technology, 2017, 4(1), 21.
79 Kim T I, Jeong H E, Suh K Y, et al. Advanced Materials, 2009, 21(22), 2276.
80 Kwak M K, Jeong H E, Kim T I, et al. Soft Matter, 2010, 6(9), 1849.
81 Michels A F, Soave P A, Nardi J, et al. Journal of Materials Science, 2015, 51(3), 1316.
22080136-882 Benbettaieb N, Karbowiak T, Brachais C H, et al. Food Chem, 2016, 195, 11.
83 El-Saftawy A A, Ragheb M S, Zakhary S G. Radiation Physics and Chemistry, 2018, 147, 106.
84 Ghanayem H, Okubayashi S. The Journal of Supercritical Fluids, 2022, 181, 105506.
85 Krommelbein C, Mutze M, Konieczny R, et al. Carbohydr Polym, 2021, 263, 117970.
86 Lee E J, Lee H M, Li Y, et al. Macromolecular Rapid Communications, 2007, 28(3), 246.
87 Pandey A, Maity S, Murmu K, et al. Nanotechnology, 2021, 32(28), 285302.
88 Murray K A, Kennedy J E, Mcevoy B, et al. European Polymer Journal, 2013, 49(7), 1782.
89 Zaki M F, Ghaly W A, El-Bahkiry H S. Surface and Coatings Technology, 2015, 275, 363.
90 Żenkiewicz M. International Journal of Adhesion and Adhesives, 2005, 25(1), 61.
91 Seshadri A, Forrest E C, Shirvan K. Applied Surface Science, 2020, 514(1), 145935.
92 Imai Y, Koga T, Takamasa T, et al. In:Proceedings of the International Conference on Nuclear Engineering, USA, 2002, pp. 979.
93 Schmid M, Wan X, Asyuda A, et al. The Journal of Physical Chemistry C, 2019, 123(46), 28301.
94 Wang L, Wang K, Erkan N, et al. Applied Surface Science, 2020, 511(1), 145555.
95 Lee E J, Jung C H, Hwang I T, et al. ACS Applied Materials & Interfaces, 2011, 3(8), 2988.
96 Murray K A, Kennedy J E, Mcevoy B, et al. International Journal of Material Science, 2013, 3(1), 1.
97 Aronov D, Molotskii M. Journal of Applied Physics, 2008, 104(11), 114903.
98 Aronov D, Molotskii M, Rosenman G. Physical Review B, 2007, 76(3), 035437.
99 Moon H, Cho S K, Garrell R L, et al. Journal of Applied Physics, 2002, 92(7), 4080.
100 Kim J, Sim S O, Park H W. Surface and Coatings Technology, 2016, 302, 535.
[1] 张墅野, 初远帆, 李振锋, 鲍俊辉, 张雨杨, 刘一甫, 易庆鸿, 崔澜馨, 何鹏. “后摩尔时代”芯片互连方法简析[J]. 材料导报, 2023, 37(15): 22040268-10.
[2] 王子伊, 薛松柏, 王剑豪, 刘晗, 温丽. 添加合金元素改善Au-Ge钎料组织及性能的研究进展[J]. 材料导报, 2020, 34(23): 23145-23153.
[3] 董小花, 程亮, 陈春彩, 朱贤方. 均匀电子束辐照诱导多壁碳纳米管非晶化[J]. 材料导报, 2019, 33(24): 4031-4034.
[4] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[5] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[6] 李宏英, 傅佳佳, 王鸿博, 陈太球, 蒋春燕. 利用等离子体预处理增强涤纶织物电子束辐照亲水改性的效果[J]. 《材料导报》期刊社, 2018, 32(4): 626-630.
[7] 刘兆文, 李毅波, 黄明辉, 汪必升, 李剑. 阳极氧化处理增强Al-Li合金胶接板剪切强度的机理[J]. 材料导报, 2018, 32(18): 3181-3184.
[8] 李波, 张智豪, 刘祥, 李晓民, 吕镇峰. 基于表面理论的温拌SBS改性沥青-集料体系的粘附性*[J]. 《材料导报》期刊社, 2017, 31(4): 115-120.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed