A Technological Review of the Use of Electron Beam Irradiation for Modifying Materials Surface Wettability
WANG Li1,2, WANG Haidou1,3,*, DI Yuelan2,*, HE Dongyu2, HUANG Yanfei2
1 College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150090, China 2 Key Laboratory of National Defense Science and Technology for Equipment Remanufacturing Technology, Army Armored of Forces Academy, Beijing 100072, China 3 National Engineering Research Center for Remanufacturing, Army Armored of Forces Academy, Beijing 100072, China
Abstract: Electron beam irradiation offers the advantages of uniformity and controllability over implanted functional groups. It has been widely used to change the surface energy and modify the surface wetting properties of materials. However, the mechanisms of interaction between the electron beam and material surface and the modification of the wettability have not been clearly elucidated. Accordingly, this work primarily focuses on the surface properties under electron beam irradiation. The mechanism is explained by elastic and inelastic interactions. When the electron beam energy exceeds the damage threshold of a material, electron beam irradiation changes the surface morphology of the material. The generation of new polar groups such as carbon, hydroxyl, and carboxyl groups between polymers or the formation of oxide layers on modified surfaces by cross-linking and grafting reactions leads to changes in the surface energy. The wettability modification of the surface under electron beam irradiation is attributed to many factors, such as the electron energy, electron dose, material type, and composite process. Electron beam irradiation can increase or decrease the surface wettability of the material, and can be precisely adjusted by controlling the electron irradiation parameters. Electron irradiation, as a novel process for the simple and rapid modification of the surface wettability, has a promising future in the preparation of hydrophobic surfaces with specific functions by an electron beam irradiation composite process.
王力, 王海斗, 底月兰, 何东昱, 黄艳斐. 电子束辐照改善材料表面润湿性能的研究进展[J]. 材料导报, 2023, 37(23): 22080136-9.
WANG Li, WANG Haidou, DI Yuelan, HE Dongyu, HUANG Yanfei. A Technological Review of the Use of Electron Beam Irradiation for Modifying Materials Surface Wettability. Materials Reports, 2023, 37(23): 22080136-9.
1 Di Y, Qiu J, Wang G, et al. Langmuir, 2021, 37(23), 7078. 2 Qiu J, Chen S, Di Y, et al. Langmuir, 2021, 37(44), 13038. 3 Ensikat H J, Ditsche-Kuru P, Neinhuis C, et al. Beilstein Journal of Nanotechnology, 2011, 2(1), 152. 4 Guo Z, Liu W, Su B L. Journal of colloid interface science, 2011, 353(2), 335. 5 Liu T, Liu Y, Di Y L, et al. Surface Technology, 2020, 49(7), 112 (in Chinese). 刘韬, 刘莹, 底月兰, 等.表面技术, 2020, 49(7), 112. 6 Zhang P, Lv F. Energy, 2015, 82, 1068. 7 Lima A C, Mano J F. Nanomedicine, 2015, 10(2), 271. 8 Jeong H, Heo J, Son B, et al. ACS Applied Materials Interfaces, 2015, 7(47), 26117. 9 Cengiz U, Erbil H Y. Applied Surface Science, 2014, 292, 591. 10 Heinonen S, Huttunen-Saarivirta E, Nikkanen J-P, et al. Colloids Surfaces A: Physicochemical Engineering Aspects, 2014, 453, 149. 11 Taurino R, Fabbri E, Pospiech D, et al. Progress in Organic Coatings, 2014, 77(11), 1635. 12 Ovaskainen L, Chigome S, Birkin N A, et al. The Journal of Supercritical Fluids, 2014, 95, 610. 13 Jeong B Y, Jung E H, Kim J H. Applied Surface Science, 2014, 307, 28. 14 Liang J, Liu K, Wang D, et al. Applied Surface Science, 2015, 338, 126. 15 Rezaei S, Manoucheri I, Moradian R, et al. Chemical Engineering Journal, 2014, 252, 11. 16 Henry F, Renaux F, Coppée S, et al. Surface science, 2012, 606(23-24), 1825. 17 Jafari R, Menini R, Farzaneh M. Applied Surface Science, 2010, 257(5), 1540. 18 Kim H K, Cho Y S. Colloids Surfaces A: Physicochemical Engineering Aspects, 2015, 465, 77. 19 Gong D, Long J, Fan P, et al. Applied Surface Science, 2015, 331, 437. 20 Lan L, Di Y L,Wang H D, et al. Surface Technology, 2021, 50(12), 246 (in Chinese). 兰铃, 底月兰, 王海斗, 等.表面技术, 2021, 50(12), 246. 21 Zhen B Y, Di Y L,Wang H D, et al. Material Reprorts. 2020, 34(23), 23109 (in Chinese). 郑博源, 底月兰, 王海斗, 等.材料导报, 2020, 34(23), 23109. 22 Di Y L,Wang H D, Gu Y, et al. Surface Technology. 2019, 48(8), 231 (in Chinese). 底月兰, 王海斗, 顾颖, 等.表面技术, 2019, 48(8), 231. 23 Lan L, Di Y L, Wang H D, et al. Friction, 2023, 11(4), 524-. 24 Duan Z, Zhao Z, Luo D, et al. Applied Surface Science, 2016, 360, 1030. 25 Li Z, Duan G, Liu G, et al. Journal of Materials Research, 2014, 29(1), 115. 26 Bai G, Hornez J C, Maschke U, et al. Radiation Physics and Chemistry, 2020, 177, 109192. 27 Lunkwitz K, Lappan U, Lehmann D. Radiation Physics Chemistry, 2000, 57(3-6), 373. 28 Cazaux J, Lehuede P. Journal of Electron Spectroscopy Related Phenomena, 1992, 59(1), 49. 29 Alvarado A, Chang H Y, Nadvornick W, et al. Applied Surface Science, 2019, 478, 142. 30 Cazaux J. Journal of Electron Spectroscopy and Related Phenomena, 2010, 176(1-3), 58. 31 Sabharwal S. In: Proceedings of PAC2013. USA, 2013, pp. 745. 32 Lappan U, Geißler U, Scheler U. Macromolecular Materials Engineering, 2007, 292(5), 641. 33 Barylski A, Swinarew A S, Aniołek K, et al. Polymers (Basel), 2020, 12(8), 1676. 34 Xi Z Y, Xu Y Y, Zhu L P, et al. Journal of Membrane Science, 2009, 339(1-2), 33. 35 Kim M I, Park M S, Lee Y S. Carbon letters, 2016, 18, 56. 36 Shin H K, Jeun J P, Kang P H. Fibers Polymers, 2012, 13(6), 724. 37 S Hassan M, K Attia M, Attia R M. Journal of Industrial Textiles, 2022, 51(3), 4899S. 38 Devyatkov V, Koval N, Schanin P, et al. Laser Particle Beams, 2003, 21(2), 243. 39 Bloembergen N, Appleton B, Celler G. MRS Bulletin, 1982, 7(1), 4. 40 Goldstein J I, Newbury D E, Echlin P, et al. Electron-beam-specimen interactions. Scanning electron microscopy and X-ray microanalysis. Springer. 1981, pp. 53. 41 Liu J, Zou Z, Su B. High energy beam heat treatment, Mechanical Engineering Industry Press, Beijing, 1997, pp. 47. 42 Chen Y F, Zhang T, Tang M, et al. e-Polymers, 2017, 17(1), 23. 43 Głuszewski W, Stasiek A, Raszkowska-Kaczor A, et al. Nukleonika, 2018, 63. 44 Dias D B, Andrade E Silva L G D. Radiation Physics Chemistry, 2007, 76, 1696. 45 Wang H, Wen Y, Peng H, et al. Polymers (Basel), 2018, 10(5), 503. 46 Jinglong G, Zaochun N, Yanhui L. e-Polymers, 2016, 16(2), 111. 47 Żenkiewicz M. Journal of Achievements in Materials Manufacturing Engineering, 2007, 24(1), 137. 48 Fowkes F M. Industrial Engineering Chemistry, 1964, 56(12), 40. 49 Owens D K, Wendt R. Journal of Applied Polymer Science, 1969, 13(8), 1741. 50 Luner P E, Oh E J C. Colloids Surfaces A: Physicochemical Engineering Aspects, 2001, 181(1-3), 31. 51 Żenkiewicz M. Polimery, 2006, 51(7), 584. 52 Coqueret X. Obtaining high performance polymeric materials by irradiation, Radiation Chemistry,EDP Sciences, 2021, pp.131. 53 Oshima A, Ikeda S, Seguchi T, et al. Radiation Physics Chemistry, 1997, 49(2), 279. 54 Xu L, Hu J, Ma H, et al. Radiation Physics Chemistry, 2018, 145, 74. 55 Oshima A, Tabata Y, Kudoh H, et al. Radiation Physics and Chemistry, 1995, 45(2), 269. 56 Wang H, Wen Y, Peng H, et al. Polymers, 2018, 10(5), 503. 57 Moura E, Somessari E, Silveira C, et al. Radiation Physics Chemistry, 2011, 80(2), 175. 58 Lee E J, Kim J J, Cho S O. Langmuir, 2010, 26(5), 3024. 59 Goss B. International Journal of Adhesion Adhesives, 2002, 22(5), 405. 60 Bongiovanni R, Encyclopedia of Polymer Science Technology, 2002, 1-20. 61 Hota N, Karna N, Dubey K, et al. European Polymer Journal, 2019, 112, 754. 62 Raghavan J, Baillie M R. Polymer composites, 2000, 21(4), 619. 63 Sánchez-Cadena L E, Tersac G, Coqueret X, et al. Progress in Organic Coatings, 2019, 136, 105268. 64 Zhang J, Duan Y, Ming Y, et al. Polymers for Advanced Technologies, 2019, 30(1), 179. 65 Li Y, Xiong Z, Zhang M, et al. Cellulose, 2021, 28(18), 11579. 66 Jiang Z, Wang Y, Liu Y, et al. Fibers and Polymers, 2016, 17(7), 1013. 67 Barylski A, Aniołek K, Swinarew A S, et al. Polymers (Basel), 2020, 12(2), 306. 68 Krause B, Stephan M, Volkland S, et al. Journal of Applied Polymer Science, 2006, 99(1), 260. 69 Zhang S, Ding F, Wang Y, et al. Fibers Polymers, 2020, 21(5), 1023. 70 Qian H, Wang H, Fu J, et al. Journal of Radiation Research Radiation Processing, 2017, 35(2), 1. 71 Abdul-Kader A, Turos A, Jagielski J, et al. Vacuum, 2005, 78(2-4), 281. 72 Dong H, Bell T. Surface Coatings Technology, 1999, 111(1), 29. 73 Torchinsky I, Rosenman G. Applied Physics Letters, 2008, 92(5), 052903. 74 Abdul-Kader A M, Turos A, Radwan R M, et al. Applied Surface Science, 2009, 255(17), 7786. 75 Abdul-Kader A M. Journal of Nuclear Materials, 2013, 435(1-3), 231. 76 El-Saftawy A A, Abd El Aal S A, Ragheb M S, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 322, 48. 77 Lee H J, Park K, Kim B N. Journal of the Korean Society for Precision Engineering, 2016, 33(1), 45. 78 Jiang X, Chen Q, Rogachev A V, et al. Journal of Coating Science and Technology, 2017, 4(1), 21. 79 Kim T I, Jeong H E, Suh K Y, et al. Advanced Materials, 2009, 21(22), 2276. 80 Kwak M K, Jeong H E, Kim T I, et al. Soft Matter, 2010, 6(9), 1849. 81 Michels A F, Soave P A, Nardi J, et al. Journal of Materials Science, 2015, 51(3), 1316. 22080136-882 Benbettaieb N, Karbowiak T, Brachais C H, et al. Food Chem, 2016, 195, 11. 83 El-Saftawy A A, Ragheb M S, Zakhary S G. Radiation Physics and Chemistry, 2018, 147, 106. 84 Ghanayem H, Okubayashi S. The Journal of Supercritical Fluids, 2022, 181, 105506. 85 Krommelbein C, Mutze M, Konieczny R, et al. Carbohydr Polym, 2021, 263, 117970. 86 Lee E J, Lee H M, Li Y, et al. Macromolecular Rapid Communications, 2007, 28(3), 246. 87 Pandey A, Maity S, Murmu K, et al. Nanotechnology, 2021, 32(28), 285302. 88 Murray K A, Kennedy J E, Mcevoy B, et al. European Polymer Journal, 2013, 49(7), 1782. 89 Zaki M F, Ghaly W A, El-Bahkiry H S. Surface and Coatings Technology, 2015, 275, 363. 90 Żenkiewicz M. International Journal of Adhesion and Adhesives, 2005, 25(1), 61. 91 Seshadri A, Forrest E C, Shirvan K. Applied Surface Science, 2020, 514(1), 145935. 92 Imai Y, Koga T, Takamasa T, et al. In:Proceedings of the International Conference on Nuclear Engineering, USA, 2002, pp. 979. 93 Schmid M, Wan X, Asyuda A, et al. The Journal of Physical Chemistry C, 2019, 123(46), 28301. 94 Wang L, Wang K, Erkan N, et al. Applied Surface Science, 2020, 511(1), 145555. 95 Lee E J, Jung C H, Hwang I T, et al. ACS Applied Materials & Interfaces, 2011, 3(8), 2988. 96 Murray K A, Kennedy J E, Mcevoy B, et al. International Journal of Material Science, 2013, 3(1), 1. 97 Aronov D, Molotskii M. Journal of Applied Physics, 2008, 104(11), 114903. 98 Aronov D, Molotskii M, Rosenman G. Physical Review B, 2007, 76(3), 035437. 99 Moon H, Cho S K, Garrell R L, et al. Journal of Applied Physics, 2002, 92(7), 4080. 100 Kim J, Sim S O, Park H W. Surface and Coatings Technology, 2016, 302, 535.