Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22090089-6    https://doi.org/10.11896/cldb.22090089
  金属与金属基复合材料 |
弹簧应力松弛反常载荷损失及原因分析
吴护林1, 李忠盛1, 金应荣2,*, 贺毅2
1 西南技术工程研究所,重庆 400039
2 西华大学材料科学与工程学院,成都 610039
Abnormal Load Loss and Cause Analysis of Spring Stress Relaxation
WU Hulin1, LI Zhongsheng1, JIN Yingrong2,*, HE Yi2
1 Southwest Institute of Technology and Engineering, Chongqing 400039, China
2 School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
下载:  全 文 ( PDF ) ( 12817KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 揭示弹簧应力松弛性能与材料组织之间的联系,对研究开发弹簧新材料、提升弹簧性能等具有重要的意义。本工作以圆柱螺旋压缩弹簧为例,采用周期试验法研究了试验温度和初始载荷对弹簧载荷损失和微观组织的影响。结果表明,温度和初始载荷耦合作用会引起载荷损失的反常变化——施加较低的初始载荷条件下温度较低时载荷损失较大,应力松弛后弹簧材料内形成了由位错富集区与位错贫瘠区组成的条带状组织。根据材料的组织特征,通过引入可激活位错与不可激活位错、可激活应力与不可激活应力的概念,导出了应力松弛的对数方程,明确了该方程的物理含义,解释了载荷损失的反常变化现象。由此认为应力松弛是可激活位错在可激活应力和热激活共同作用下运动引起的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴护林
李忠盛
金应荣
贺毅
关键词:  应力松弛  反常载荷损失  对数方程  条带状组织  可激活位错  Cottrell气团    
Abstract: It is of great significance to reveal the relationship between spring stress relaxation performance and the microstructure of spring material for the development of new spring materials and the improvement of spring performance. In this work, effects of test temperature and initial load on the load loss and microstructure of the cylindrical helical compression spring were studied by periodic test method. The results show that the coupling effect of temperature and initial load can cause the abnormal load loss-the slight initial load will cause larger load loss at lower temperature than that at higher temperature, after stress relaxation, a strip structure composed of dislocation rich and dislocation poor regions was formed in the spring material. Due to the structural characteristics of materials, and by introducing the concepts of activable dislocation and inactive dislocation, activable stress and inactive stress, the logarithmic equation of stress relaxation is derived, the physical meaning of the equation is clarified, and the abnormal change phenomenon of load is explained. It is considered that the stress relaxation is caused by the movement of activable dislocations since the combined action of activable stress and thermal activation.
Key words:  stress relaxation    abnormal load loss    logarithmic equation    strip structure    activable dislocation    Cottrell atmosphere
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  TG142.75  
基金资助: 国家科学技术发展计划(HDH59020303)
通讯作者:  * 金应荣,西华大学材料科学与工程学院研究员、硕士研究生导师。1985年、1988年、2002年分别于重庆大学、哈尔滨工业大学和四川大学获得工学学士学位、工学硕士学位和工学博士学位,2002年到西华大学工作至今。目前主要从事高性能结构材料等方面的研究工作,发表文章80余篇。Jinry@mail.xhu.edu.cn   
作者简介:  吴护林,中国兵器装备集团有限公司中国兵器工业第五九研究所所长。1985年、1988年分别于重庆大学和华南理工大学获得工学学士学位和硕士学位,2016年华南理工大学电子与信息专业博士毕业,目前主要研究领域为先进装备与材料,发表文章70余篇。
引用本文:    
吴护林, 李忠盛, 金应荣, 贺毅. 弹簧应力松弛反常载荷损失及原因分析[J]. 材料导报, 2023, 37(23): 22090089-6.
WU Hulin, LI Zhongsheng, JIN Yingrong, HE Yi. Abnormal Load Loss and Cause Analysis of Spring Stress Relaxation. Materials Reports, 2023, 37(23): 22090089-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22090089  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22090089
1 Nechache A, Bouzid A H. Journal of Pressure Vessel Technology, 2008, 130, 031211.
2 Zhang Y H, Liu H H, Jiang Y. Machinery Industry Standardization & Quality, 2008(10), 26(in Chinese).
张英会, 刘辉航, 姜膺. 机械工业标准化与质量, 2008(10), 26.
3 Luo J, Xiong W, Li X, et al. Materials Science & Engineering, 2019, A743,755.
4 Peng Heli, Li Xifeng, Chen Xu, et al. Transactions of Nonferrous Metals Society of China, 2020, 30,668.
5 Liu Y, Liu R T. Journal of Heat Treatment of Materials, 2008,29(3),131(in Chinese).
刘勇, 刘瑞堂, 材料热处理学报, 2008, 29(3),131.
6 Nong X, Gao J Z, Wu J W, et al. Metal Heat Treatment, 2022, 47(1),106(in Chinese).
农鑫, 高金忠, 吴俊武, 等. 金属热处理, 2022, 47(1),106.
7 Su D D, Li Y L, Zhang J P. Journal of Heat Treatment of Metals, 1990, 11(3),1(in Chinese).
苏德达, 李忆莲, 张捷平. 金属热处理学报, 1990, 11(3),1.
8 Li J M, Zhao N Q, Li Q Y, et al. Metal Heat Treatment, 2007(5),90(in Chinese).
李建明, 赵乃勤, 李群英, 等. 金属热处理, 2007, 32(5),90.
9 Hariharan K, Jain J. Manufacturing Letters, 2020, 26,64.
10 Jeong C Y, Nam S W, Ginsztler J. Materials Science and Engineering, 1999, A264,188.
11 Varma A, Hariharan K, Jain J, et al. Mechanics of Materials, 2019, 133,138.
12 Lian Y, Wang X, Wang J, et al. Engineering Failure Analysis, 2022, 135,106061.
13 Feng X H. Chinese Science Bulletin, 2012, 57(25),2354(in Chinese).
封先河. 科学通报. 2012, 57(25),2354.
14 Li T. Study on creep and stress relaxation of 0Cr18Ni9 stainless steel spring. Master's Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
李腾, 0Cr18Ni9不锈钢弹簧蠕变和应力松弛研究, 硕士学位论文, 哈尔滨工业大学, 2014.
15 Wang K, Shi J P, Jin P. Journal of Applied Mechanics, 2021, 38(1), 158(in Chinese).
王柯, 师俊平, 金朋, 应用力学学报, 2021, 38(1),158.
16 Zhao H, Wang T X, Wang M, et al. Chinese Journal of Solid Mechanics, 2014, 35(4),410(in Chinese).
赵华, 王廷喜, 王萌, 等. 固体力学学报, 2014, 35(4),410.
17 Zhou J Q, Zhang X J, Wang J B. Ordnance Material Science and Engineering, 2013, 36(3), 92(in Chinese).
周建强, 张贤杰, 王俊彪. 兵器材料科学与工程, 2013, 36(3), 92.
18 Saadatkiaa S, Mirzadeh H, Cabrer J M. Materials Science & Engineering, 2015, A636,196.
19 Jeong C Y, Nam S W, Ginsztler J. Materials Science and Engineering, 1999, A264,188.
20 Jiang H, Dong J X, Zhang M C, et al. Acta Metallurgica Sinica, 2019, 55(9),1211(in Chinese).
江河, 董建新, 张麦仓, 等. 金属学报, 2019, 55(9),1211.
21 Li Peng, Li Shouxin, Wang Zhongguang, et al. Science China Materials, 2015, 58, 921.
22 Li P, Zhang Z F, Li S X, et al. Scripta Materialia, 2008, 59,730.
23 Wang B S, Sun F Y, Gao Z Y, et al. Acta Metallurgica Sinica, 1997, 33(11),1135(in Chinese).
王勃生, 孙福玉, 高振英, 等. 金属学报, 1997, 33(11),1135.
24 Bonetti, Castellani. Acta Metallurgica Sinica, 1983, 31(10),1689.
25 Ke T S, Rung B T, Wang Y N. Acta Physica Sinica, 1955, 11(1),91(in Chinese).
葛庭燧, 容保粹, 王业宁. 物理学报. 1955, 11(1),91.
26 Sun Yuqing, Peng Lijun, Huang Guojie, et al. Materials Science & Engineering, 2021, A799,140144.
No related articles found!
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed