Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22020068-9    https://doi.org/10.11896/cldb.22020068
  无机非金属及其复合材料 |
基于响应曲面法的煤矸石地聚物注浆材料配比优化
周梅1,2,*, 白金婷1,2, 郭凌志1,2, 张玉琢2,3
1 辽宁工程技术大学土木工程学院,辽宁 阜新 123000
2 辽宁省煤矸石资源化利用及节能建材重点实验室,辽宁 阜新 123000
3 沈阳建筑大学土木工程学院,沈阳 110168
Optimization of Grouting Material Proportion of Coal Gangue Geopolymer Based on Response Surface Methodology
ZHOU Mei1,2,*, BAI Jinting1,2, GUO Lingzhi1,2, ZHANG Yuzhuo2,3
1 College of Civil Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
2 Liaoning Provincial Key Laboratory of Coal Gangue Resource Utilization and Energy-saving Building Materials, Fuxin 123000, Liaoning, China
3 College of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
下载:  全 文 ( PDF ) ( 13632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以机械活化的原状煤矸石、粉煤灰和水泥为主料,水玻璃、氢氧化钠和脱硫石膏为激发剂配体,制备煤矸石地聚物注浆材料(CGGM)。采用响应曲面法中的Box-Behnken设计,研究煤矸石粉掺量、水玻璃模数和掺量对CGGM流动性、凝结时间和抗压强度的影响并揭示强度形成机理,构建回归模型,探究各因素及它们之间交互作用的影响程度,获得综合性能最佳配比。结果表明:三因素对各响应值影响显著部分交互项影响显著,各因素与响应值呈二次多项式模型,各模型回归系数R2皆大于0.99,模型合理性和拟合性好。煤矸石粉和粉煤灰的微集料效应对前期强度有一定贡献,随着龄期延长,二者在激发剂配体作用下发生了聚合反应,生成C-(N)-S-A-H凝胶等,故CGGM强度形成主要来自C-S-H、AFt 和C-(N)-S-A-H。当煤矸石粉掺量40%、水玻璃模数和掺量分别为1.6和12.2%时,CGGM的各项性能基本满足矿井高承压水害治理要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周梅
白金婷
郭凌志
张玉琢
关键词:  煤矸石  地聚物注浆材料  响应曲面法  配比  激发剂    
Abstract: Coal gangue geopolymer grouting material (CGGM) was prepared with mechanically activated coal gangue, fly ash and cement as main materials, sodium silicate, sodium hydroxide and desulfurization gypsum as activator ligands. The Box-Behnken design of response surface methodology was used to study the effects of coal gangue powder content, sodium silicate modulus and content on the fluidity, setting time and compressive strength of CGGM and reveal the formation mechanism of strength. The regression model was constructed to explore the influence of various factors and their interaction, and the optimal ratio of comprehensive performance was obtained. The results show that the three factors have a significant influence on each response value, and there are some interaction items. Each factor and the response value show a quadratic polynomial model, and the regression coefficient R2 of each model is greater than 0.99. The rationality and fitting of the model are good. The micro-aggregate effect of coal gangue powder and fly ash has a certain contribution to the early strength. With the prolongation of age, the polymerization reaction occurs between them under the action of activator ligand, producing C-(N)-S-A-H gel, etc. Therefore, the formation of CGGM strength mainly comes from C-S-H, AFt and C-(N)-S-A-H. When the coal gangue powder content is 40%, the sodium silicate modulus and content are 1.6 and 12.2%, and the performance of CGGM basically meets the control requirements of mine high-pressure water damage.
Key words:  coal gangue    geopolymer grouting material    response surface method    ratio    activator
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  TU472  
基金资助: 国家自然科学基金联合基金资助项目(U1261122);国家自然科学基金青年基金资助项目(51808352);辽宁省教育厅科学技术项目(LJ2019FL006);辽宁工程技术大学学科创新团队资助项目(LNTU20TD-12)
通讯作者:  *周梅,辽宁工程技术大学土木工程学院教授级高级工程师、博士研究生导师。2008年辽宁工程技术大学土木工程专业硕士毕业。目前主要从事煤基固废建材资源化利用、先进土木工程材料与结构耐久性等方面的研究工作。主持和参与完成国家及省部级科研项目10余项,获省部级以上科研奖励2项,主编和参编各类标准5部,主编教材和工具书5部,在国内外重要期刊发表学术论文150余篇。现为中国硅酸盐学会固废与生态材料分会理事、煤基固废学术委员会委员。zhoumei1108@126.com   
引用本文:    
周梅, 白金婷, 郭凌志, 张玉琢. 基于响应曲面法的煤矸石地聚物注浆材料配比优化[J]. 材料导报, 2023, 37(20): 22020068-9.
ZHOU Mei, BAI Jinting, GUO Lingzhi, ZHANG Yuzhuo. Optimization of Grouting Material Proportion of Coal Gangue Geopolymer Based on Response Surface Methodology. Materials Reports, 2023, 37(20): 22020068-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020068  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22020068
1 Li S C, Zhang W J, Zhang Q S, et al. Rock and Soil Mechanics, 2014, 35(3), 745(in Chinese).
李术才, 张伟杰, 张庆松, 等. 岩土力学, 2014, 35(3), 745.
2 Li T, Gao Y, Chen W, et al. Journal of China Coal Society, 2018, 43(S1), 262(in Chinese).
李涛, 高颖, 陈伟, 等. 煤炭学报, 2018, 43(S1), 262.
3 Zhang Cong, Fu Jinyang, Yang Junsheng, et al. Construction and Building Materials, 2018, 187, 327.
4 Capasso I, Lirer S, Flora A, et al. Journal of Cleaner Production, 2019, 220, 65.
5 Wu Yuguo, Yu Xiaoyang, Hu Shengyong, et al. Process Safety and Environmental Protection, 2019, 123, 39.
6 Yang B G, Yang J, Yu Y, et al. Journal of Mining Science and Techno-logy, 2017, 8(5), 475(in Chinese).
杨宝贵, 杨捷, 于跃, 等. 矿业科学学报, 2017, 8(5), 475.
7 Wang H X, Zhang G Z, Ding Q J, et al. Journal of Building Materials, 2007(3), 374(in Chinese).
王红喜, 张高展, 丁庆军, 等. 建筑材料学报, 2007(3), 374.
8 Feng H, Zhang X M, Ou X F, et al. Journal of South China University of Technology(Natural Science Edition), 2020, 48(09), 43(in Chinese).
冯涵, 张学民, 欧雪峰, 等. 华南理工大学学报(自然科学版), 2020, 48(09), 43.
9 Li Z F, Zhang J, Li S C, et al. Journal of Cleaner Production, 2020, 245(C), 118759.
10 Tang Y S, Zhang L F, Lyu H Y, et al. Journal of Mining Science and Technology, 2019, 19(4), 327(in Chinese).
唐岳松, 张令非, 吕华永, 等. 矿业科学学报, 2019, 19(4), 327.
11 Li R, Jiang Y H, et al. Journal of the Chinese Ceramic Society, 2022, 50(3), 782(in Chinese).
李锐, 姜永华, 等. 硅酸盐学报, 2022, 50(3), 782
12 Liu Y H, Peng J H, Meng B, et al. Journal of the Chinese Ceramic Society, 2011, 39(3), 403(in Chinese).
刘永鹤, 彭金辉, 孟彬, 等. 硅酸盐学报, 2011, 39(3), 403.
13 Jia X F, Liu Y H. Journal of Synthetic Crystals, 2021, 50(5), 938(in Chinese).
贾晓凤, 刘玉慧. 人工晶体学报, 2021, 50(5), 938.
14 Li D, Feng G R, Guo Y X, et al. Journal of China Coal Society, 2016, 41(2), 392(in Chinese)
李典, 冯国瑞, 郭育霞, 等. 煤炭学报, 2016, 41(2), 392.
15 Yang L X, Song X F, Lu M R, et al. Materials Reports, 2022, 36(4), 21020037(in Chinese)
杨利香, 宋兴福, 陆美荣, 等. 材料导报, 2022, 36(4), 21020037.
16 Zhou M, Zhao H M, Qu H L, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(8), 1908(in Chinese).
周梅, 赵华民, 瞿宏霖, 等. 硅酸盐通报, 2014, 33(8), 1908.
17 Guo L Z, Zhou M, Wang L J, et al. Journal of Building Materials, 2022, 25(10),9(in Chinese).
郭凌志, 周梅, 王丽娟, 等. 建筑材料学报, 2022, 25(10),9.
18 Guo L Z, Zhou M, Wang X Y, et al. Construction and Building Materials, 2022, 328(3), 126997.
19 Zhang L F, Liu L N, Cao S, et al. Materials Reports, 2017, 31(12), 15(in Chinese).
张兰芳, 刘丽娜, 曹胜, 等. 材料导报, 2017, 31(12), 15.
20 Wang H T, Wang X C, Zhai M H, et al. Journal of China Coal Society, 2017, 42(11), 2981(in Chinese).
王慧涛, 王晓晨, 翟明华, 等. 煤炭学报, 2017, 42(11), 2981.
21 Xia J, Zhang L, Yang Y Z, et al. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(11), 99.(in Chinese).
夏军武, 张龙, 杨远征, 等. 华中科技大学学报(自然科学版), 2018, 46(11), 99.
22 Wang C, Liu C, Pei W J, et al. Journal of Materials Science & Enginee-ring, 2022, 40(1), 97(in Chinese).
王川, 刘超, 裴文晶, 等. 材料科学与工程学报, 2022, 40(1), 97.
23 Qian Jueshi, Yu Jincheng, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569(in Chinese).
钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569.
24 Zhu Xingyi, Li Wenkai, Du Zhao, et al. Construction and Building Materials, 2021, 305, 124654.
25 Peiliang Cong, Linna Mei. Construction and Building Materials, 2021, 275, 122171.
26 Jang J G, Lee H K. Construction and Building Materials, 2016, 106, 260.
27 Telesca A, Marroccoli M, Pace M L, et al. Cement and Concrete Composites, 2014, 53(10), 224.
28 Mehta P K. Cement and Concrete Research, 1973, 3(1), 1.
29 Syam Nair, Dallas Little. Transportation Research Record, 2009, 2104(1), 55.
30 Chen Shi, Ge Zhang, Tingshu He, et al. Construction and Building Materials, 2016, 112, 261.
31 Wang Aiguo, Zheng Yi, Zhang Z H, et al. Materials Reports, 2019, 33(8), 2552(in Chinese).
王爱国, 郑毅, 张祖华, 等. 材料导报, 2019, 33(8), 2552.
[1] 孙志辉, 赵帅. “双碳”背景下煤矸石高附加值功能化改性技术现状与展望[J]. 材料导报, 2023, 37(S1): 23040034-10.
[2] 关虓, 陈霁溪, 朱梦宇, 高洁, 丁莎. 微波活化煤矸石对水泥基材料的性能影响[J]. 材料导报, 2023, 37(4): 21050134-7.
[3] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[4] 罗晓宇, 冯曰海, 赵鑫, 刘思余. 镁合金摆动多道增材层成形特征参数与尺寸控制规律研究[J]. 材料导报, 2023, 37(18): 22040093-7.
[5] 杜青铉, 张宇航, 孙伟豪, 刘蕊, 庄尧量, 夏军武. 基于混合模型的煤矸石透水混凝土透水系数预测[J]. 材料导报, 2022, 36(Z1): 22040077-5.
[6] 童国庆, 张吾渝, 高义婷, 唐雄宇. 碱激发粉煤灰地聚物的力学性能及微观机制研究[J]. 材料导报, 2022, 36(4): 20100278-6.
[7] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[8] 徐海燕, 杨雪雷, 王爱国, 朱颖灿, 刘开伟, 黄濛, 王星尧. 地质聚合物基防护涂料及其性能提升技术的研究进展[J]. 材料导报, 2022, 36(19): 21110045-7.
[9] 葛洁雅, 朱红光, 李宗徽, 李为健, 沈正艳, 侯金良, 杨森. 煤矸石粗骨料-地聚物混凝土的力学与耐久性能研究[J]. 材料导报, 2021, 35(z2): 218-223.
[10] 时松, 刘长武, 吴海宽, 陈康亮. 粉煤灰-电石渣双掺改性高水充填材料物理力学性能研究[J]. 材料导报, 2021, 35(7): 7027-7032.
[11] 郭启龙, 王晓庆, 王璟, 裴军军, 李俊国, 张联盟. 原位反应烧结Zr2Al4C5化合物增韧ZrB2-SiC复相陶瓷的制备工艺及力学性能[J]. 材料导报, 2021, 35(6): 6065-6070.
[12] 吴金荣, 崔善成, 李飞, 洪荣宝. 煤矸石粉/聚酯纤维沥青混合料低温抗裂性研究[J]. 材料导报, 2021, 35(6): 6078-6085.
[13] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[14] 王启扬, 杨波. 碳酸盐基常固态复合相变材料的制备与性能研究[J]. 材料导报, 2020, 34(Z1): 137-139.
[15] 冉德钦, 安斌, 李轶然, 惠冰, 李艳召, 宋光远, 宋海民. 基于多孔介质煤矸石路基汞元素的扩散规律研究[J]. 材料导报, 2020, 34(Z1): 255-257.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed