Optimization of Grouting Material Proportion of Coal Gangue Geopolymer Based on Response Surface Methodology
ZHOU Mei1,2,*, BAI Jinting1,2, GUO Lingzhi1,2, ZHANG Yuzhuo2,3
1 College of Civil Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China 2 Liaoning Provincial Key Laboratory of Coal Gangue Resource Utilization and Energy-saving Building Materials, Fuxin 123000, Liaoning, China 3 College of Civil Engineering, Shenyang Jianzhu University, Shenyang 110168, China
Abstract: Coal gangue geopolymer grouting material (CGGM) was prepared with mechanically activated coal gangue, fly ash and cement as main materials, sodium silicate, sodium hydroxide and desulfurization gypsum as activator ligands. The Box-Behnken design of response surface methodology was used to study the effects of coal gangue powder content, sodium silicate modulus and content on the fluidity, setting time and compressive strength of CGGM and reveal the formation mechanism of strength. The regression model was constructed to explore the influence of various factors and their interaction, and the optimal ratio of comprehensive performance was obtained. The results show that the three factors have a significant influence on each response value, and there are some interaction items. Each factor and the response value show a quadratic polynomial model, and the regression coefficient R2 of each model is greater than 0.99. The rationality and fitting of the model are good. The micro-aggregate effect of coal gangue powder and fly ash has a certain contribution to the early strength. With the prolongation of age, the polymerization reaction occurs between them under the action of activator ligand, producing C-(N)-S-A-H gel, etc. Therefore, the formation of CGGM strength mainly comes from C-S-H, AFt and C-(N)-S-A-H. When the coal gangue powder content is 40%, the sodium silicate modulus and content are 1.6 and 12.2%, and the performance of CGGM basically meets the control requirements of mine high-pressure water damage.
1 Li S C, Zhang W J, Zhang Q S, et al. Rock and Soil Mechanics, 2014, 35(3), 745(in Chinese). 李术才, 张伟杰, 张庆松, 等. 岩土力学, 2014, 35(3), 745. 2 Li T, Gao Y, Chen W, et al. Journal of China Coal Society, 2018, 43(S1), 262(in Chinese). 李涛, 高颖, 陈伟, 等. 煤炭学报, 2018, 43(S1), 262. 3 Zhang Cong, Fu Jinyang, Yang Junsheng, et al. Construction and Building Materials, 2018, 187, 327. 4 Capasso I, Lirer S, Flora A, et al. Journal of Cleaner Production, 2019, 220, 65. 5 Wu Yuguo, Yu Xiaoyang, Hu Shengyong, et al. Process Safety and Environmental Protection, 2019, 123, 39. 6 Yang B G, Yang J, Yu Y, et al. Journal of Mining Science and Techno-logy, 2017, 8(5), 475(in Chinese). 杨宝贵, 杨捷, 于跃, 等. 矿业科学学报, 2017, 8(5), 475. 7 Wang H X, Zhang G Z, Ding Q J, et al. Journal of Building Materials, 2007(3), 374(in Chinese). 王红喜, 张高展, 丁庆军, 等. 建筑材料学报, 2007(3), 374. 8 Feng H, Zhang X M, Ou X F, et al. Journal of South China University of Technology(Natural Science Edition), 2020, 48(09), 43(in Chinese). 冯涵, 张学民, 欧雪峰, 等. 华南理工大学学报(自然科学版), 2020, 48(09), 43. 9 Li Z F, Zhang J, Li S C, et al. Journal of Cleaner Production, 2020, 245(C), 118759. 10 Tang Y S, Zhang L F, Lyu H Y, et al. Journal of Mining Science and Technology, 2019, 19(4), 327(in Chinese). 唐岳松, 张令非, 吕华永, 等. 矿业科学学报, 2019, 19(4), 327. 11 Li R, Jiang Y H, et al. Journal of the Chinese Ceramic Society, 2022, 50(3), 782(in Chinese). 李锐, 姜永华, 等. 硅酸盐学报, 2022, 50(3), 782 12 Liu Y H, Peng J H, Meng B, et al. Journal of the Chinese Ceramic Society, 2011, 39(3), 403(in Chinese). 刘永鹤, 彭金辉, 孟彬, 等. 硅酸盐学报, 2011, 39(3), 403. 13 Jia X F, Liu Y H. Journal of Synthetic Crystals, 2021, 50(5), 938(in Chinese). 贾晓凤, 刘玉慧. 人工晶体学报, 2021, 50(5), 938. 14 Li D, Feng G R, Guo Y X, et al. Journal of China Coal Society, 2016, 41(2), 392(in Chinese) 李典, 冯国瑞, 郭育霞, 等. 煤炭学报, 2016, 41(2), 392. 15 Yang L X, Song X F, Lu M R, et al. Materials Reports, 2022, 36(4), 21020037(in Chinese) 杨利香, 宋兴福, 陆美荣, 等. 材料导报, 2022, 36(4), 21020037. 16 Zhou M, Zhao H M, Qu H L, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(8), 1908(in Chinese). 周梅, 赵华民, 瞿宏霖, 等. 硅酸盐通报, 2014, 33(8), 1908. 17 Guo L Z, Zhou M, Wang L J, et al. Journal of Building Materials, 2022, 25(10),9(in Chinese). 郭凌志, 周梅, 王丽娟, 等. 建筑材料学报, 2022, 25(10),9. 18 Guo L Z, Zhou M, Wang X Y, et al. Construction and Building Materials, 2022, 328(3), 126997. 19 Zhang L F, Liu L N, Cao S, et al. Materials Reports, 2017, 31(12), 15(in Chinese). 张兰芳, 刘丽娜, 曹胜, 等. 材料导报, 2017, 31(12), 15. 20 Wang H T, Wang X C, Zhai M H, et al. Journal of China Coal Society, 2017, 42(11), 2981(in Chinese). 王慧涛, 王晓晨, 翟明华, 等. 煤炭学报, 2017, 42(11), 2981. 21 Xia J, Zhang L, Yang Y Z, et al. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2018, 46(11), 99.(in Chinese). 夏军武, 张龙, 杨远征, 等. 华中科技大学学报(自然科学版), 2018, 46(11), 99. 22 Wang C, Liu C, Pei W J, et al. Journal of Materials Science & Enginee-ring, 2022, 40(1), 97(in Chinese). 王川, 刘超, 裴文晶, 等. 材料科学与工程学报, 2022, 40(1), 97. 23 Qian Jueshi, Yu Jincheng, Sun H Q, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1569(in Chinese). 钱觉时, 余金城, 孙化强, 等. 硅酸盐学报, 2017, 45(11), 1569. 24 Zhu Xingyi, Li Wenkai, Du Zhao, et al. Construction and Building Materials, 2021, 305, 124654. 25 Peiliang Cong, Linna Mei. Construction and Building Materials, 2021, 275, 122171. 26 Jang J G, Lee H K. Construction and Building Materials, 2016, 106, 260. 27 Telesca A, Marroccoli M, Pace M L, et al. Cement and Concrete Composites, 2014, 53(10), 224. 28 Mehta P K. Cement and Concrete Research, 1973, 3(1), 1. 29 Syam Nair, Dallas Little. Transportation Research Record, 2009, 2104(1), 55. 30 Chen Shi, Ge Zhang, Tingshu He, et al. Construction and Building Materials, 2016, 112, 261. 31 Wang Aiguo, Zheng Yi, Zhang Z H, et al. Materials Reports, 2019, 33(8), 2552(in Chinese). 王爱国, 郑毅, 张祖华, 等. 材料导报, 2019, 33(8), 2552.