Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22040230-4    https://doi.org/10.11896/cldb.22040230
  无机非金属及其复合材料 |
Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究
郑德勇1,2, 晋慧慧2, 姬鹏霞1,2,3,*
1 宁夏大学宁夏智能装备CAE重点实验室, 银川 750021
2 武汉理工大学材料复合新技术国家重点实验室, 武汉 430070
3 深圳大学广东省功能材料界面工程技术研究中心, 广东 深圳 518060
Preparation and Reconstruction Behavior in Alkaline Hydrogen Evolution Reaction of Co3S4 Electrode Material
ZHENG Deyong1,2, JIN Huihui2, JI Pengxia1,2,3,*
1 Ningxia Key Laboratory of CAE on Intelligent Equipment, Ningxia University, Yinchuan 750021, China
2 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
3 Guangdong Research Center for Interfacial Engineering of Functional Materials, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 5043KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 因为析氢反应(HER)电位远低于析氧反应(OER),催化剂的重构过程相对迟缓,所以其重构现象鲜有报道。为此,本工作通过水热和硫化两步法成功合成了自支撑碳布(CC)负载纯相Co3S4电极材料,其微观呈纳米颗粒组装的绿疣海葵状结构。该电极材料在1 mol/L KOH的HER电化学测试中就能发生快速、完全重构,催化活性显著提升,在100 mA·cm-2时过电位降低约55 mV。诱发重构主要是硫组分浸出所致。重构后的电极材料物相为Co(OH)2,且形貌已完全转变为数层纳米片堆叠而成的大比表面花状结构,暴露出更多的活性位点,促进电解液与电极材料的接触,加速催化反应中的传质过程,进而提升催化活性。这一发现有助于科研工作者初步认识硫化物催化剂电极材料在HER催化过程中的重构行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郑德勇
晋慧慧
姬鹏霞
关键词:  电催化  Co3S4电极材料  析氢反应  重构行为    
Abstract: The reconstruction phenomenon of catalyst in hydrogen evolution reaction (HER) is rarely reported due to its reaction potential being much lower than that of oxygen evolution reaction (OER). To this end, the self-supporting carbon cloth (CC) supported pure phase Co3S4 electrode material was successfully synthesized by a hydrothermal combined sulfurized two-step approach, and the microstructure shows a green wart sea anemone-like structure assembled by nanoparticles. In the HER electrochemical test of 1 mol/L KOH, the electrode material can undergo rapid and complete reconstruction, and the catalytic activity is significantly improved. At 100 mA·cm-2, the overpotential decreases by about 55 mV. The reconstruction was mainly induced by sulfur leaching. The reconstructed electrode material phase is Co(OH)2, and its morphology has been completely transformed into a large specific surface flower structure formed by stacking several layers of nanosheets, exposing more active sites, promoting the electrolyte-electrode contact, accelerating the mass transfer process, thus improving catalytic activity. This discovery is helpful for researchers to preliminarily understand the reconstruction behavior of sulfide electrode materials in HER.
Key words:  electro-catalysis    Co3S4 electrode material    hydrogen evolution reaction    reconstruction behavior
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  O646  
基金资助: 博士后科学基金(2022M712161);国家自然科学基金(22102128)
通讯作者:  *姬鹏霞,2015年毕业于新疆大学,获工程硕士学位。2021年毕业于武汉理工大学,获工学博士学位。目前就职于深圳大学,从事博士后研究。主要从事纳米电催化材料的构筑与重构机理的研究。以第一作者身份在国内外期刊发表论文5篇,其中SCI一区三篇,其中一篇为高被引论文,另EI和中文核心各一篇。另外以参与作者身份发表了SCI一区论文13篇。jipengxia_a@sina.cn   
作者简介:  郑德勇,2012年毕业于湖北理工学院,获得工学学士学位。2021年进入宁夏大学攻读硕士研究生,目前主要研究方向为非贵金属基电解水催化剂的合成与改性。
引用本文:    
郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
ZHENG Deyong, JIN Huihui, JI Pengxia. Preparation and Reconstruction Behavior in Alkaline Hydrogen Evolution Reaction of Co3S4 Electrode Material. Materials Reports, 2023, 37(18): 22040230-4.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040230  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22040230
1 Staffell I, Scamman D, Velazquez A A, et al. Energy & Environmental Science, 2019, 12, 463.
2 Wang J X. Green Petroleum & Petrochemicals, 2020, 5(6), 68 (in Chinese).
王加欣. 石油石化绿色低碳, 2020, 5(6), 68.
3 Rodríguez-Lugo R E, Trincado M, Vogt M, et al. Nature Chemistry, 2013, 5(4), 342.
4 Dai C, Pan Y, Liu B. Advanced Energy Materials, 2020, 10(42), 2070172.
5 Hansen J N, Prats H, Toudahl K K, et al. ACS Energy Letters, 2021, 6(4), 1175.
6 Hu H, Kazim F M D, Zhang Q, et al. ChemCatChem, 2019, 11(17), 4327.
7 Povia M, Abbott D F, Herranz J, et al. Energy & Environmental Science, 2019, 12(10), 3038.
8 Eagle F W, Rivera-Maldonado R A, Cossairt B M. Annual Review of Materials Research, 2021, 51(1), 541.
9 Zhang X J, Ma L, Sun Y H. Materials Reports, 2021, 35 (23), 23040 (in Chinese).
张晓君, 马梁, 孙迎辉. 材料导报, 2021, 35 (23), 23040.
10 Swesi A T, Masud J, Nath M. Energy & Environmental Science, 2016, 9(5), 1771.
11 Jie L A, Dong L A, Cej A, et al. International Journal of Hydrogen Energy, 2020, 45(53), 28616.
12 Duf P, Eisenberg R. Energy & Environmental Science, 2012, 5(3), 2012.
13 Liu X, Meng J, Zhu J, et al. Advanced Materials, 2021, 33(32), 2007344.
14 Ji P, Luo X, Chen D, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(48), 17851.
15 Wang L, Wu X, Guo S, et al. Journal of Materials Chemistry A, 2016, 5(6), 2717.
16 Wang X, Zhong X, Zha Z, et al. Applied Materials Today, 2019, 18, 100464.
17 Duan Y, Lee J Y, Xi S, et al. Angewandte Chemie International Edition, 2021, 60(13), 7418.
18 Masa J, Sinev I, Mistry H, et al. Advanced Energy Materials, 2017, 7(17), 1700381.
19 Wu Y, Liu Y, Li G D, et al. Nano Energy, 2017, 35, 161.
20 Karakaya C, Solati N, Savaci U, et al. ACS Catalysis, 2020, 10(24), 15114.
21 Pradhan B, Kumar G S, Dalui A, et al. Journal of Materials Chemistry C, 2016, 4, 4967.
[1] 庄明兴, 卡盖·索音图, 付文英, 司司, 余添玉, 杨俊东, 章剑, 梁宇欣, 赵新生, 魏永生. 硼/磷掺杂电解水析氢金属催化剂的研究现状与进展[J]. 材料导报, 2023, 37(S1): 22080121-11.
[2] 赵帅凯, 李亚如, 任永鹏, 王长记, 潘昆明, 王利萌, 吕贝贝, 夏梁彬, 陈雪敏. ZIF衍生材料在ORR、OER和HER领域的应用研究进展[J]. 材料导报, 2023, 37(S1): 23010012-12.
[3] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[4] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[5] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[6] 周靓, 何文远, 陈隆源, 朱红伟, 陈丽娟, 凌辉, 郑学军. Sn、P共掺杂MoS2纳米花的制备及电催化析氢性能研究[J]. 材料导报, 2023, 37(15): 22020118-7.
[7] 贾少培, 宗泳吉, 黄权, 李其松, 张茜, 李彩玉, 王志新, 穆云超. 蛋白质衍生氮掺杂碳用作电化学能源材料的研究进展[J]. 材料导报, 2023, 37(15): 21100210-14.
[8] 吴靓, 周子坤, 姬丽, 肖逸锋, 张乾坤. 多孔Ni-Cu-Ti电极的制备及析氢性能[J]. 材料导报, 2023, 37(13): 21100074-9.
[9] 王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
[10] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[11] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[12] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[13] 刘圆圆, 余强, 陈阵, 朱薇, 胡琪, 郑昭毅, 尤红军, 吕泽, 陈帮耀. 电流密度对钴锰共掺杂二氧化铅阳极材料电化学性能的影响[J]. 材料导报, 2022, 36(18): 20100153-6.
[14] 向阳, 熊昆, 张海东, 陈佳, 余林键. 电催化尿素氧化的镍基催化剂表界面调控[J]. 材料导报, 2022, 36(10): 20080297-8.
[15] 齐美丽, 李勉拓, 张梦娟, 吴艳玲. 双原子催化剂在电催化领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 481-484.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed