Please wait a minute...
材料导报  2023, Vol. 37 Issue (13): 21010106-9    https://doi.org/10.11896/cldb.21010106
  金属与金属基复合材料 |
7系铝合金焊接技术的研究现状及展望
陈轩, 李萌蘖*, 卜恒勇, 左汉宁
昆明理工大学材料科学与工程学院,昆明 650093
Research Status and Progress on the Welding Technologies of 7XXX Series Aluminum Alloy
CHEN Xuan, LI Mengnie Victor*, BU Hengyong, ZUO Hanning
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
下载:  全 文 ( PDF ) ( 9723KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本文主要对7系列铝合金焊接技术的现状进行总结和展望。当前7系铝合金的主要焊接工艺有电弧焊接、搅拌摩擦焊接、激光焊接以及复合焊接。电弧焊接主要分为钨极气体保护(TIG)焊、熔化极惰性气体保护(MIG)焊和冷金属过渡(CMT)焊接技术。7系铝合金采用CMT焊接工艺得到的焊缝美观,性能好。焊丝选择上,为避免焊缝中合金元素的烧损及裂纹敏感区,通常选用5系的铝镁焊丝。搅拌摩擦焊接是当前工程生产中铝合金焊接时采用最多的焊接方法,但不适用于形状复杂的焊接接头。激光焊接近年来通过发展已经在工业上得到推广及应用。未来7系铝合金焊接的研究方向是通过复合焊接工艺、开发新型焊丝、双丝焊接等方法来扩大其在工程上的使用范围。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈轩
李萌蘖
卜恒勇
左汉宁
关键词:  铝合金焊接  电弧焊接  搅拌摩擦焊接  激光焊接  复合焊接    
Abstract: In this paper, current situation of welding technologies of the 7XXX series aluminum alloys are summarized and prospected. Currently, primary welding processes that use 7XXX series aluminum alloys include arc welding, friction stir welding, laser welding, and hybrid welding. Arc welding consists of three parts:tungsten inert gas arc welding, metal inertia gas welding, and cold metal transfer welding. The welding of aluminum using an aluminum alloy results in well-crafted and highly efficient products. The 5-series welding wires can effectively prevent heat loss and the occurrence of crack-sensitive regions. Friction stir welding is the most widely used aluminum alloy welding method in manufacturing processes. However, it is not suitable for welding joints with complex shapes. Laser welding has recently been introduced in the industry. Future research on 7-series aluminum alloys will focus on hybrid welding, welding using newly-developed welding wires, double-wire welding, and other methods that will expand the scope of engineering.
Key words:  aluminum alloy welding    arc welding    fricition stir welding    laser welding    hybrid welding
发布日期:  2023-07-10
ZTFLH:  TG457  
基金资助: 云南省稀贵金属材料基因工程(一期2020)(202002AB080001-4)
通讯作者:  *李萌蘖,昆明理工大学材料科学与工程学院教授、博士研究生导师。1984年清华大学焊接专业本科毕业,1987年北京航空材料研究所金属材料热处理专业硕士毕业,1995年俄勒冈理工学院材料科学与工程专业博士毕业。目前主要从事金属材料加工集成计算材料工程方面的研究。发表论文50余篇。limengnie@163.com   
作者简介:  陈轩,2013年7月、2017年3月于上海工程技术大学材料科学与工程学院分别获得工学学士学位和硕士学位。现为昆明理工大学材料科学与工程学院博士研究生,在肖寒教授的指导下进行研究。主要研究方向为铝合金焊接工艺及焊剂集成计算模拟工程。
引用本文:    
陈轩, 李萌蘖, 卜恒勇, 左汉宁. 7系铝合金焊接技术的研究现状及展望[J]. 材料导报, 2023, 37(13): 21010106-9.
CHEN Xuan, LI Mengnie Victor, BU Hengyong, ZUO Hanning. Research Status and Progress on the Welding Technologies of 7XXX Series Aluminum Alloy. Materials Reports, 2023, 37(13): 21010106-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21010106  或          http://www.mater-rep.com/CN/Y2023/V37/I13/21010106
1 Han S W, Zhou C Z, Peng X Y, et al. Journal of Chongqing University of Technology(Natural Science), 2023, 37(4), 151 (in Chinese).
韩世伟, 周长征, 彭小洋, 等. 重庆理工大学学报(自然科学), 2023, 37(4), 151.
2 Sun W, Zhu Y, Marceau R, et al. Science, 2019, 363(6430), 972.
3 Wang W Q, Zuo H Y, Yang H, et al. Journal of Chongqing University of Technology(Natural Science), 2021, 35(11), 81 (in Chinese).
王维青, 左浩越, 杨宏, 等 重庆理工大学学报(自然科学), 2021, 35(11), 81
4 Ma Y L, Zhao X H, Yang B Y, et al. Journal of Chongqing University of Technology(Natural Science), 2020, 34(9), 131 (in Chinese).
麻彦龙, 赵旭晗, 杨炳元, 等 重庆理工大学学报(自然科学), 2020, 34(9), 131.
5 Wei Y N, Shang L Y, Jin J, et al. Rare Metal Materials and Engineering, 2016, 45(11), 2774.
6 Huang W F, Huang J G. Welding guidelines of aluminum and aluminum alloy, Hunan Science and Technology Press, China, 2004, pp.220 (in Chinese).
黄旺福, 黄金刚. 铝及铝合金焊接指南, 湖南科学技术出版社, 2004, pp.220.
7 Zhou W S, Yao J S. The welding of aluminum and aluminum alloy, China Machine Press, China, 2006, pp.178 (in Chinese).
周万盛, 姚君山. 铝及铝合金的焊接, 机械工业出版社, 2006, pp.178.
8 Norman A F, Hyde K, Costello F, et al. Materials Science & Engineering A, 2003, 354(1-2), 188.
9 Zeidabadi H, Mirdamadi S, Godarzi M. Russian Journal of Non-Ferrous Metals, 2015, 56(2), 217.
10 Jin L K. Microstructure and properties of Er containing aluminum alloy TIG welding. Master's Thesis, Beijing University of Technology, China, 2011 (in Chinese).
靳立坤. 含铒铝合金TIG焊组织与性能. 硕士学位论文, 北京工业大学, 2011.
11 He R Y, Huang Q B, Cui H B, et al. Materials Reports, 2020, 34(18), 129(in Chinese).
何柔月, 黄启波, 崔洪波, 等. 材料导报, 2020, 34(18), 129.
12 Lin S B, Song J L, Ma G C, et al. Transactions of the China Welding Institution, 2009, 30(7), 9 (in Chinese).
林三宝, 宋建岭, 马广超, 等. 焊接学报, 2009, 30(7), 9.
13 Song Y, Dong H G, Guo X, et al. Welding & Joining, 2014(12), 20 (in Chinese).
宋洋, 董红刚, 郭鑫, 等. 焊接, 2014(12), 20.
14 Liao C Q, Su G Y, Gao Y F, et al. The Chinese Journal of Nonferrous Metals, 2015, 25(1), 43 (in Chinese).
廖传清, 宿国友, 高艳芳, 等. 中国有色金属学报, 2015, 25(1), 43.
15 Wang X L. Study on TIG welding process and properties of spray formed 7xxx series aluminum alloy. Master's Thesis, Jiangsu University of Science and Technology, China, 2011 (in Chinese).
王锡岭. 喷射成形7xxx系铝合金TIG焊工艺及性能研究. 硕士学位论文, 江苏科技大学, 2011.
16 Pan Y, Wu W J, Ouyang Z J. Hot Working Technology, 2020, 49(13), 37 (in Chinese).
潘云, 吴文娟, 欧阳志军. 热加工工艺, 2020, 49(13), 37.
17 Zhang K, Liu Z J. Hot Working Technology, 2019, 48(3), 83 (in Chinese).
张琨, 刘政军. 热加工工艺, 2019, 48(3), 83.
18 Wang P B. Study on ultrasonic-assisted TIG welding process and mechanism of 7075 aluminum alloy. Master's Thesis, Shenyang University of Technology, China, 2019 (in Chinese).
王鹏博. 7075铝合金超声辅助TIG焊接工艺及机理研究. 硕士学位论文, 沈阳工业大学2019.
19 Mehdi H, Mishra R S. Transactions of the Indian Institute of Metals, 2020, 73, 1773.
20 Arizmendi-Salgado V A. International Journal of Electrochemical Science, 2019, 14, 8243.
21 Liu S F, Wang J P. Ordnance Material Science and Engineering, 2018, 41(2), 22 (in Chinese).
刘守法, 王晋鹏. 兵器材料科学与工程, 2018, 41(2), 22.
22 Xu Z A. Journal of Harbin University of Science and Technology, 2013, 18(1), 51 (in Chinese).
许志安. 哈尔滨理工大学学报, 2013, 18(1), 51.
23 Hu S. Chinese Journal of Mechanical Engineering, 2001, 37(9), 18.
24 Murakami T, Nakata K, Tong H J, et al. ISIJ International, 2003, 43(10), 1596.
25 Reyna-Montoya J S, Garcia-Renteria M A, Cruz-Hernandez V L, et al. Transactions of Nonferrous Metals Society of China, 2019, 29(3), 473.
26 Liu Z J, Zhang K, Liu C J. Transactions of the China Welding Institution, 2019, 40(3), 91(in Chinese).
刘政军, 张琨, 刘长军. 焊接学报, 2019, 40(3), 91.
27 Lin F L. Process and control of double-wire MIG welding additive manufacturing by additional protective gas. Master's Thesis, South China University of Technology, China, 2020 (in Chinese).
林方略. 附加保护气双丝MIG焊增材制造工艺与控制. 硕士学位论文, 华南理工大学, 2020.
28 Liu H W, Li J L, Ma B, et al. Hot Working Technology, 2011, 40(9), 117 (in Chinese).
刘红伟, 李京龙, 马冰, 等. 热加工工艺, 2011, 40(9), 117.
29 Feng Y H, Zhou F M. Welding & Joining, 2002(1), 5 (in Chinese).
冯曰海, 周方明. 焊接, 2002(1), 5.
30 Li S Z, Han X H, Xing Y S, et al. Locomotive & Rolling Stock Technology, 2020, 344(4), 26 (in Chinese).
李帅贞, 韩晓辉, 邢艳双, 等. 机车车辆工艺, 2020, 344(4), 26.
31 Song Y B, Li L, Lv J M, et al. The Chinese Journal of Nonferrous Metals, 2018, 28(3), 492 (in Chinese).
宋友宝, 李龙, 吕金明, 等. 中国有色金属学报, 2018, 28(3), 492.
32 Li S, Dong H, Wang X, et al. Journal of Manufacturing Processes, 2020, 54, 80.
33 Sokoluk M, Cao C, Pan S, et al. Nature Communications, 2019, 10(1), 98.
34 Zuo M, Sokoluk M, Cao C, et al. Scientific Reports, 2019, 9(1), 1067.
35 Hongseok C, Woo-hyun C, Hiromi K. Metallurgical & Materials Transactions A, 2013, 44, 1897.
36 Oropeza D, Hofmann D C, Williams K, et al. Journal of Alloys and Compounds, 2020, 834, 154987.
37 Wang P. Study on CMT welding process of Mg/Al dissimilar metals based on the control of energy input process. Ph. D. Thesis, Tianjin Unversity, China, 2017 (in Chinese).
王鹏. 基于CMT焊接能量输入过程控制的镁/铝异种金属焊接研究. 博士学位论文, 天津大学, 2017.
38 Selvi S, Vishvaksenan A, Rajasekar E. Defence Technology, 2018, 14(1), 17.
39 Lin Q, Zeng C, Cao R, et al. International Journal of Heat and Mass Transfer, 2016, 96, 118.
40 Bruckner J. Welding Journal, 2005, 84(6), 38.
41 Zhang H T, Ma J C, Hu L L. Materials Science and Technology, 2012, 20(2), 128(in Chinese)
张洪涛, 冯吉才, 胡乐亮. 材料科学与工艺, 2012, 20(2), 128.
42 Kadoi K, Murakami A, Shinozaki K, et al. Materials Science and Engineering:A, 2016, 666, 11.
43 Tian Y B, Shen J Q, Hu S S, et al. Acta Metallurgica Sinica, 2019, 55(11), 1407 (in Chinese).
田银宝, 申俊琦, 胡绳荪, 等. 金属学报, 2019, 55(11), 1407.
44 Gandhi C, Dixit N, Aranke O, et al. Materials Today:Proceedings, 2018, 5(11), 24024.
45 Zhang X, Chen B, Xie D J. Heat Treatment of Metals, 2020, 45(4), 176 (in Chinese).
张翔, 陈波, 解德杰. 金属热处理, 2020, 45(4), 176.
46 Dai X Y, Xia C Q, Liu C B. Hot Working Technology, 2005(11), 1 (in Chinese).
戴晓元, 夏长清, 刘昌斌. 热加工工艺, 2005(11), 1.
47 Zeng Q, Zhu S W. Materials Protection, 2018(7), 52 (in Chinese).
曾强, 朱绍维. 材料保护, 2018(7), 52.
48 Mishra R S, Ma Z Y. Materials Science & Engineering R, 2005, 50(1-2), 1.
49 Rhodes C G, Mahoney M W, Bingel W H, et al. Scripta Materialia, 1997, 36(1), 69.
50 Zeng J C, Song B, Zou D W, et al. Materials Report, 2021, 35(7), 7162 (in Chinese).
曾金成, 宋波, 左敦稳, 等. 材料导报, 2021, 35(7), 7162.
51 Zhang Z Q, He C S, Zhao S, et al. Journal of Northeastern University (Natural Science), 2020, 41(12), 1708 (in Chinese).
张志强, 何长树, 赵夙, 等. 东北大学学报(自然科学版), 2020, 41(12), 1708.
52 Periyasamy Y K, Perumal A V, Rajasekaran D. Transactions of the Indian Institute of Metals, 2018, 71(1), 2575.
53 Zhao Y, Wang Q, Chen H, et al. Materials & Design, 2014, 56(4), 725.
54 Ji P F, Zhang Z, Zhao G H, et al. Aerospace Materials & Technology, 2020, 50(3), 6 (in Chinese).
计鹏飞, 张振, 赵光辉, 等. 宇航材料工艺, 2020, 50(3), 6.
55 Wu Q. Numerical study of fatigue life of welding tools and microstructure evolution in friction stir welding. Ph. D. Thesis, Dalian University of Technology, China, 2018 (in Chinese).
吴奇. 搅拌摩擦焊搅拌头疲劳寿命和构件微结构演化数值模拟. 博士学位论文, 大连理工大学, 2018.
56 Sun L Y. Study on firction stir welding microstructure and properties of 7xxx aluminum alloy. Master's Thesis, Beijing Jiaotong Univercity, China, 2017 (in Chinese).
孙鲁怡. 7xxx铝合金搅拌摩擦焊焊接接头组织与性能研究. 硕士学位论文, 北京交通大学, 2017.
57 Xu W F, Wu X K, Ma J, et al. Journal of Materials Research and Technology, 2019, 8(6), 6029.
58 Wang Y, Chai P, Ma H, et al. Journal of Materials Science, 2020, 55(1), 358.
59 Zhang C, Cao Y, Huang G, et al. Journal of Manufacturing Processes, 2020, 49, 214.
60 Zhou Q H, Liu Z, Du T, et al. Material Sciences, 2021, 11(4), 317 (in Chinese).
周青华, 刘州, 杜涛, 等. 材料科学, 2021, 11(4), 317.
61 Chen X. Effect of high frequency micro-vibration on microstructure and fatigue properties during laser welding. Master's Thesis, Shanghai University of Engineering Science, China, 2017 (in Chinese).
陈轩. 高频微振激光焊接接头显微组织与疲劳性能的研究. 硕士学位论文. 上海工程技术大学, 2017.
62 Zhao H, White D R, Debroy T. Metallurgical Reviews, 1999, 44(6), 238.
63 Chen X, Lu Q H, Zhang J, et al. Journal of Mechanical Engineering, 2016, 52(20), 60 (in Chinese).
陈轩, 卢庆华, 张静, 等. 机械工程学报, 2016, 52(20), 60.
64 Xue S B, Wang B, Zhang L, et al. Materials Reports, 2019, 33(17), 2813.
薛松柏, 王博, 张亮, 等. 材料导报, 2019, 33(17), 2813.
65 Cai Z W, Lu Q H, Zhang C, et al. Transactions of the China Welding Institution, 2019, 40(1), 53 (in Chinese).
蔡遵武, 卢庆华, 张成, 等. 焊接学报, 2019, 40(1), 53.
66 Dausinger F, Chen X, Fujioka T, et al. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 3888, 367.
67 Paleocrassas A G, Tu J F. ICALEO 2005:24th International Congress on Laser Materials Processing and Laser Microfabrication, 2005, 2005(1), 503.
68 Zhang W, Lu Q H, Ren X H, et al. Chinese Journal of Laser, 2019, 46(3), 107 (in Chinese).
张巍, 卢庆华, 任新怀, 等. 中国激光, 2019, 46(3), 107.
69 Zhang W, Lu Q H, Zhang P L, et al. Materials Research Express, 2019, 6(4), 4654.
70 Manjhi S K, Das A, Prasad S B. Materials Today:Proceedings, 2020. 26, 1255.
71 Liu C C, Liu C, Zhu Z, et al. Journal of Harbin Institute of Technology, 2021, 53(2), 93 (in Chinese).
刘成财, 刘琛, 朱智, 等. 哈尔滨工业大学学报, 2021, 53(2), 93.
72 Yu Z H, Zhang D T, Zhang W, et al. Hot Working Technology, 2020, 49(5), 41 (in Chinese).
俞宗华, 张大童, 张文, 等. 热加工工艺, 2020, 49(5), 41.
73 Zhao Y, Liu H, Yang T, et al. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12), 1467.
74 Hou Y X, Luo Z Y, Yi Y Y, et al. Laser Technology, 2020, 44(3), 304 (in Chinese).
侯艳喜, 罗子艺, 易耀勇, 等. 激光技术, 2020, 44(3), 304.
75 Zhang Y, Song X P, Chang L Y, et al. Rare Metal Materials and Engineering, 2017, 46(9), 2411.
76 Chen Y, Yang Z, Shi C, et al. Materials, 2019, 12(22), 3651.
77 Faraji A H, Goodarzi M, Seyedein S H, et al. Welding in the World, 2016, 60(1), 137.
78 Zhou J, Tsai H L. Journal of Physics D:Applied Physics, 2009, 42(9), 955.
79 She P, Sun W G, Ma C P. Electric Welding Machine, 2020, 50(4), 111 (in Chinese).
佘鹏, 孙维光, 马传平. 电焊机, 2020, 50(4), 111.
80 Wen P, Li Z X, Zhang S, et al. Chinese Journal of Lasers, 2020, 47(8), 82 (in Chinese).
温鹏, 栗忠秀, 张松, 等. 中国激光, 2020, 47(8), 82.
81 Han X H, Li S Z, Mao Z D, et al. Chinese Journal of Lasers, 2019, 46(12), 86 (in Chinese).
韩晓辉, 李帅贞, 毛镇东, 等. 中国激光, 2019, 46(12), 86.
82 Cornacchia G, Cecchel S, Panvini A. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8), 2017.
83 Lei Z L, Li B W, Zhu P G, et al. Chinese Journal of Lasers, 2018, 45(10), 103 (in Chinese).
雷正龙, 黎炳蔚, 朱平国, 等. 中国激光, 2018, 45(10), 103.
[1] 乔及森, 杨元庄, 王磊, 高振云, 冯睿. 焊剂片约束电弧焊接三明治板熔滴过渡与熔池波动研究[J]. 材料导报, 2023, 37(2): 21050032-8.
[2] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[3] 时尚, 刘丰刚, 黄春平, 舒宗富. 激光复合热源焊接技术的研究进展[J]. 材料导报, 2022, 36(11): 20100230-8.
[4] 栗卓新, 田振, 李红, 王义朋, 曹健, 周辰. 纳米陶瓷颗粒对铝合金焊缝强度和微观组织影响的研究进展[J]. 材料导报, 2022, 36(1): 20090070-8.
[5] 刘甲, 徐家磊, 马照伟, 雷小伟, 高奇, 崔永杰. 钛合金等离子和MIG复合焊接技术研究[J]. 材料导报, 2021, 35(z2): 358-360.
[6] 田飞, 蔺宏涛, 江海涛. 高强度钢QP980激光焊接头的微观组织与力学性能[J]. 材料导报, 2021, 35(Z1): 447-453.
[7] 邓德伟, 吕捷, 马玉山, 张勇, 黄治冶. FV520B钢激光焊接工艺参数优化及组织性能[J]. 材料导报, 2021, 35(8): 8127-8133.
[8] 孙雅杰, 常云龙. 磁控电弧焊接过程及新技术研究进展[J]. 材料导报, 2020, 34(21): 21155-21165.
[9] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[10] 陈永城, 罗子艺, 张宇鹏, 易耀勇, 李明军. 紫铜/304不锈钢激光焊接接头显微组织及力学性能[J]. 材料导报, 2019, 33(2): 325-329.
[11] 罗子艺, 韩善果, 陈永城, 蔡得涛, 哈斯金·弗拉基斯拉夫. 工艺参数对激光-电弧复合焊缝成形及拉伸性能的影响[J]. 材料导报, 2019, 33(13): 2146-2150.
[12] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[13] 宋刚, 迟佳玉, 于景威, 刘黎明. 镁/钢激光-电弧复合焊接接头的腐蚀行为[J]. 材料导报, 2018, 32(16): 2773-2777.
[14] 彭进, 王星星, 杨嘉佳, 李勇, 王孝虎. 单束与双束串行激光填丝焊特性对比[J]. 材料导报, 2018, 32(16): 2822-2827.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed