Please wait a minute...
材料导报  2023, Vol. 37 Issue (1): 20100223-9    https://doi.org/10.11896/cldb.20100223
  金属与金属基复合材料 |
金属工程材料腐蚀疲劳行为研究进展
王歧山, 何川, 陈旭*
辽宁石油化工大学石油天然气工程学院,沈阳 113001
Research Progress of Corrosion Fatigue Behavior of Metal Engineering Materials
WANG Qishan, HE Chuan, CHEN Xu*
College of Petroleum Engineering, Liaoning Petrochemical University, Shenyang 113001,China
下载:  全 文 ( PDF ) ( 27688KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 合金钢、不锈钢等金属工程材料在服役过程中受到交变荷载以及腐蚀性介质的共同作用,使工程结构发生腐蚀疲劳,造成金属工程材料的承载能力降低和服役寿命缩短。因此,揭示载荷-环境体系下材料的腐蚀疲劳开裂规律对工程结构的前期设计及使用寿命预测都有深远意义。
金属工程材料腐蚀疲劳失效的机制包括裂纹萌生和扩展两部分。目前的研究主要集中于裂纹扩展寿命,对裂纹萌生的研究较少。裂纹萌生机制仍存在争议,主要的观点有点蚀加速裂纹形成理论、滑移带优先溶解理论、保护膜破裂理论和吸附理论等。目前,关于腐蚀疲劳裂纹扩展机制的研究主要有阳极溶解和氢致开裂两种观点。
影响腐蚀疲劳寿命的主要因素分为材料因素、力学因素及环境因素三方面。目前力学因素的研究主要集中于应力比、加载频率、加载波形等;材料因素的研究主要为显微组织及合金元素;环境因素的研究包括介质温度、浓度、含氧量、pH值及外加电位等。
本文综述了金属工程材料腐蚀疲劳开裂机制及影响因素的研究现状,归纳了金属腐蚀疲劳的研究成果与不足,并在此基础上提出了下一步的研究方向及发展趋势,为相关领域的研究人员提供新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王歧山
何川
陈旭
关键词:  腐蚀疲劳  裂纹萌生  裂纹扩展  影响因素    
Abstract: Alloy steel and stainless steel and other engineering materials are subjected to cyclic load and corrosive mediumin the process of service, which leads to corrosion fatigue of engineering structures, reducing the load-bearing capability and shortening the service life of metal engineering materials. It is of great significance for the early design and the service life prediction of engineering structures to reveal the corrosion fatigue cracking law of materials in load-environment system.
The corrosion fatigue failure mechanism of metal engineering materials included crack initiation and propagation. The current researches mainly focus on crack propagation life, and relatively few on crack initiation. The mechanism of corrosion fatigue crack initiation is still controversial, and the main ideas are pitting accelerated crack formation theory, slip band preferential dissolution theory, protective film rupture theory and adsorption theory. Two viewpoints, anodic dissolution and hydrogen induced cracking, have been proposed to study the mechanism of corrosion fatigue crack propagation.
The main factors affecting corrosion fatigue life are material factors, mechanical factors and environmental factors.The researches of mechanical factors mainly focus on stress ratio, loading frequency, loading waveform. The material factors are mainly microstructure and alloying elements. Environmental factors include medium temperature, concentration, oxygen content, pH value and applied potential.
In this paper, the research status of corrosion fatigue cracking mechanism of metal engineering materials and influencing factors were reviewed. This paper also summarized the research achievements and shortcomings of metal corrosion fatigue, and on the basis of this, proposed the future research direction and development trend, to provide new ideas for researchers in related fields.
Key words:  corrosion fatigue    crack initiation    crack growth    influence factor
出版日期:  2023-01-10      发布日期:  2023-01-31
ZTFLH:  TG174.3  
基金资助: 教育部“春晖”国际合作计划项目;辽宁省教育厅面上项目(LJKZ0416)
通讯作者:  * 陈旭,辽宁石油化工大学石油天然气工程学院教授,2009年毕业于北京科技大学,获材料学博士学位。先后主持国家自然基金1项、教育部项目1项、辽宁省自然科学基金1项。近年来,在金属材料腐蚀与防护研究领域发表论文30余篇。cx0402@sina.com   
作者简介:  王歧山,辽宁石油化工大学硕士研究生。主要研究领域为油气管道的腐蚀与防护。
引用本文:    
王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
WANG Qishan, HE Chuan, CHEN Xu. Research Progress of Corrosion Fatigue Behavior of Metal Engineering Materials. Materials Reports, 2023, 37(1): 20100223-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100223  或          http://www.mater-rep.com/CN/Y2023/V37/I1/20100223
1 Zhao T L, Liu Z Y, Du C W, et al. International Journal of Fatigue, 2018, 110, 105.
2 Zamani S M, Hassanzadeh-Tabrizi S A, Sharifi H. Engineering Failure Analysis, 2016, 59, 605.
3 Wang Y, Zhang W H, Zheng Y Q. Applied Sciences, 2020, 10, 2293.
4 Cheng A K, Chen N Z. International Journal of Fatigue, 2017, 96, 152.
5 Liao X X, Huang Y M, Qiang B, et al. International Journal of Fatigue, 2020, 135, 105542.
6 Tan Y N, Yu J X, Yu Y, et al. Periodical of Ocean University of China, 2021, 51(6), 109(in Chinese).
谭玉娜, 余建星, 余杨, 等. 中国海洋大学学报(自然科学版), 2021, 51(6), 109.
7 Li X B, Yu J X, Wang H K, et al. Hot Working Technology, 2019, 48(10), 87(in Chinese).
李修波, 余建星, 王华昆, 等. 热加工工艺, 2019, 48(10), 87.
8 Okorokov V, Morgantini M, Gorash Y, et al. Procedia Engineering, 2018, 213, 674.
9 Turnbull A, Zhou S. Corrosion Science, 2010, 53, 503.
10 Chang H, Han E H, Wang J Q, et al. Journal of Chinese Society for Corrosion and Protection, 2006(1), 34(in Chinese).
常红, 韩恩厚, 王俭秋, 等. 中国腐蚀与防护学报, 2006(1), 34.
11 Zhang Z G, Zhou Z Y, Liu C Y. Journal of Chinese Society for Corrosion and Protection, 2008, 28(1), 48(in Chinese).
张正贵, 周兆元, 刘长勇. 中国腐蚀与防护学报, 2008, 28(1), 48.
12 Yan X S, Huang X P, Zhou X T. Ship Science and Technology, 2016, 38(2), 27(in Chinese).
闫小顺, 黄小平, 周心桃. 舰船科学技术, 2016, 38(2), 27.
13 Bach J, Möller J J, Göken M, et al. International Journal of Fatigue, 2016, 93, 281.
14 Mughrabi H. Metallurgical & Materials Transactions B, 2009, 40, 1257.
15 Wang C, Wagner D, Wang Q, et al. Fatigue & Fracture of Engineering Materials & Structures, 2015, 38, 1324.
16 Gkatzogiannis S, Weinert J, Engelhardt I, et al. International Journal of Fatigue, 2019, 126, 90.
17 Zhang T, Liu J, Huang F, et al. Journal of Chinese Society for Corrosion and Protection, 2021, 41(2), 226(in Chinese).
张腾, 刘静, 黄峰, 等. 中国腐蚀与防护学报, 2021, 41(2), 226.
18 Ma J, Zhang B, Wang J, et al. Corrosion Science, 2010, 52, 2867.
19 Sadananda K, Vasudevan A K. International Journal of Fatigue, 2020, 134, 105471.
20 Ebara R. Procedia Engineering, 2010, 2, 1297.
21 Ebara R. Engineering Failure Analysis, 2004, 13, 516.
22 Ishibashi Y, Kayamori Y. Materials Science Forum, 2019, 4559, 1716.
23 Ahn S H, Frederick V, Lawrence J, et al. Fatigue & Fracture of Engineering Materials & Structures, 1992, 15, 625.
24 Sun X M, Liu Y G, Ma J. Physical Testing and Chemical Analysis(Part A:Physical Testing), 2010, 46(8), 475(in Chinese).
孙先明, 刘彦国, 马锦. 理化检验(物理分册), 2010, 46(8), 475.
25 Zhou X Y, Ke W. Acta Metallurgica Sinica, 1992(8), 72(in Chinese).
周向阳, 柯伟. 金属学报, 1992(8), 72.
26 Kong Z Y, Xu S H, Liu D F. Journal of North China University of Water Resources and Electric Power), 2010, 31(6), 46(in Chinese).
孔正义, 徐善华, 刘德峰. 华北水利水电大学学报(自然科学版), 2010, 31(6), 46.
27 Liang X J, Ji H X. Hot Working Technology, 2020, 49(14), 55(in Chinese).
梁秀娟, 嵇海旭. 热加工工艺, 2020, 49(14), 55.
28 Palin-Luc T, Pérez-Mora R, Bathias C, et al. Engineering Fracture Mechanics, 2010, 77, 1953.
29 Zhao W M, Wang Y X, Zhang T M, et al. Corrosion Science, 2012, 57, 99.
30 Hong Y S, Liu X L, Lei Z Q, et al. International Journal of Fatigue, 2016, 89, 108.
31 Schönbauer B M, Stanzl-Tschegg E, Perlega A, et al. Engineering Fracture Mechanics, 2015, 147, 158.
32 Tong K, Zeng Y P, Han X L, et al. Advanced Materials Research, 2011, 1333, 1096.
33 Ai F F, Xu X L, Chen Y Q, et al. Corrosion & Protection, 2012, 33(5), 422(in Chinese).
艾芳芳, 徐小连, 陈义庆, 等. 腐蚀与防护, 2012, 33(5), 422.
34 Bi Z Y, Jing X T, He S L, et al. Hot Working Technology, 2010, 39(22), 19(in Chinese).
毕宗岳, 井晓天, 何石磊, 等. 热加工工艺, 2010, 39(22), 19.
35 Spriestersbach D, Grad P, Kerscher E. Procedia Engineering, 2014, 74, 84.
36 Gu C, Bao Y P, Gan P, et al. International Journal of Minerals, Metallurgy, and Materials, 2018, 25, 623.
37 Hong Y S, Zhao A G, Qian G A, et al. Metallurgical and Materials Transactions A, 2012, 43, 2753.
38 Lu L T, Li W, Zhang J W, et al. Acta Metallurgica Sinica, 2009, 45(1), 73(in Chinese).
鲁连涛, 李伟, 张继旺, 等. 金属学报, 2009, 45(1), 73.
39 Gu J, Yang M S, Lu D H, et al. Journal of Materials Engineering, 2019, 47(7), 134(in Chinese).
郭军, 杨卯生, 卢德宏, 等. 材料工程, 2019, 47(7), 134.
40 Meurling F, Melander A, Tidesten M, et al. International Journal of Fatigue, 2001, 23, 215.
41 Fajdiga G, Sraml M. Engineering Fracture Mechanics, 2009, 76, 1320.
42 Wu X Q, Katada Y. Corrosion Science, 2004, 47, 1415.
43 Wu X, Katada Y. Materials and Corrosion, 2005, 56, 305.
44 Xu S, Han E H, Ke W, et al. Corrosion & Protection, 2010, 31(11), 825(in Chinese).
徐松, 韩恩厚, 柯伟, 等. 腐蚀与防护, 2010, 31(11), 825.
45 Xu L P, Cao X J, Li J K, et al. Rare Metal Materials and Engineering, 2017(1), 83(in Chinese).
许罗鹏, 曹小建, 李久楷, 等. 稀有金属材料与工程, 2017(1), 83.
46 Wang J Q, Li J, Wang Z F, et al. Acta Metallurgica Sinica, 1995, 31(15), 103(in Chinese).
王俭秋, 李劲, 王政富, 等. 金属学报, 1995, 31(15), 103.
47 Wang C, Liu Y J, Nikitin A, et al. Fatigue & Fracture of Engineering Materials & Structures, 2019, 42, 2183.
48 Jia K N, Wang H D, Jiang Q Y. Hot Working Technology, 2009(19), 25(in Chinese).
贾坤宁, 王海东, 姜秋月. 热加工工艺, 2009(19), 25.
49 Sangid M D. International Journal of Fatigue, 2013, 57, 58
50 Sadananda K, Vasudevan A K. Corrosion Reviews, 2015, 33, 335.
51 Liu Y G, Ma J, Sun X M. Mechanics in Engineering, 2010(32), 49(in Chinese).
刘彦国, 马进, 孙先明. 力学与实践, 2010(32), 49.
52 Zhang Z Y, Tan J B, Wu X Q, et al. Corrosion Science, 2019, 146, 80.
53 Sun X G, Wang Z H, Xu X X, et al. Journal of Chinese Society for Corrosion and Protection, 2021(4), 501(in Chinese).
孙晓光, 王子晗, 徐学旭, 等. 中国腐蚀与防护学报, 2021(4), 501.
54 Co N E C, Burns J T. International Journal of Fatigue, 2017, 103, 234.
55 Tan J B, Wu X Q, Han E H, et al. Journal of Nuclear Materials, 2017, 489, 33.
56 Wu H C, Yang B, Shi Y Z, et al. Journal of Materials Science & Technology, 2015, 31(11), 1144.
57 Luo S J, Liu M, Lin X Z. Materials and Corrosion, 2019, 70, 688.
58 Wan L, Geng W T, Ishii A, et al. International Journal of Plasticity, 2019, 112, 206.
59 Vosikovsky O. Journal of Engineering Materials and Technology, 1975, 97, 298.
60 Thorpe T W, Scott P M, Rance A, et al. International Journal of Fatigue, 1983, 5, 123.
61 Mayén J, Abúndez A, Pereyra I, et al. Engineering Fracture Mechanics, 2017, 177, 203.
62 Zhao T L, Liu Z Y, Du C W, et al. Materials Science & Engineering A, 2017, 708, 181.
63 Hu P, Meng Q C, Hu W P, et al. Corrosion Science, 2016, 113, 78.
64 Wang C Q, Xiong J J, Shenoi R A, et al. International Journal of Fatigue, 2016, 83, 280.
65 Chen J, Diao B, He J J, et al. International Journal of Fatigue, 2018, 110, 153.
66 Han Y D, Li Z, Xu L Y, et al. Transactions of the China Welding Institution, 2018, 39, 13(in Chinese).
韩永典, 李展, 徐连勇, 等. 焊接学报, 2018, 39, 13.
67 Kang D H, Lee J K, Kim T W. Engineering Failure Analysis, 2010, 18, 557.
68 Kang D H, Lee J K, Kim T W. Procedia Engineering, 2011, 10, 1170.
69 Dai J R, Huang Y, Wu Z M. Corrosion Science and Protection Technology, 2016, 28(2), 109(in Chinese).
代娇荣, 黄一, 吴智敏. 腐蚀科学与防护技术, 2016, 28(2), 109.
70 Zhao T L, Liu Z Y, Du C W, et al. International Journal of Fatigue, 2018, 110, 105.
71 Chlistovsky R M, Heffernan P J, Duquesnay D L. International Journal of Fatigue, 2007, 29, 1941.
72 Huang Y, Wu Z M, Shangguan Y J. Low Temperature Architecture Technology, 2015, 37(9), 3(in Chinese).
黄一, 吴智敏, 上官祎瑾. 低温建筑技术, 2015, 37(9), 3.
73 Ke W, Li J. Corrosion Science and Protection Technology, 1999, 11(2), 3(in Chinese).
柯伟, 李劲. 腐蚀科学与防护技术, 1999, 11(2), 3.
74 Han G W, Song Y J. Journal of Chinese Society for Corrosion and Protection, 1991, 11(4), 297(in Chinese).
韩光炜, 宋余九. 中国腐蚀与防护学报, 1991, 11(4), 297.
75 Zhao W M, Xin R F, He Z R, et al. Corrosion Science, 2012, 63, 387.
76 Pfennig A, Wiegand R, Wolf M, et al. Corrosion Science, 2013, 68, 1343.
77 Han E H, Han Y M, Zheng Y L, et al. Acta Metallurgica Sinica, 1993, 29(5), 31(in Chinese).
韩恩厚, 韩玉梅, 郑宇礼, 等. 金属学报, 1993, 29(5), 31.
78 Wang J, Li X Y, Zhang Y L. Journal of Mechanical Strength, 2009, 31(6), 972(in Chinese).
王晶, 李晓阳, 张亦良. 机械强度, 2009, 31(6), 972.
79 Huang F, Li X G, Liu J, et al. Journal of Materials Science, 2011, 46, 715.
80 Shipilov S A. Journal of Chinese Society for Corrosion and Protection, 2004, 24(6), 2(in Chinese).
Shipilov S A. 中国腐蚀与防护学报, 2004, 24(6), 2.
81 Huang X G, Xu J Q. Acta Mechanica Solida Sinica, 2013, 34(1), 7(in Chinese).
黄小光, 许金泉. 固体力学学报, 2013, 34(1), 7.
82 Sriraman M R, Pidaparti R M. Journal of Materials Engineering and Performance, 2010, 19, 7.
83 Wang S Q, Zhang D K, Hu N N, et al. Materials, 2016, 9, 750.
84 Wang H, Liu X, Ni G X. Hot Working Technology, 2019, 48(10), 79(in Chinese).
王恒, 刘肖, 倪广县. 热加工工艺, 2019, 48(10), 79.
85 Bernd M, Schönbauer, Stefanie E, et al. International Journal of Fatigue, 2014, 65, 33.
86 Li M X, Wang R, Li P L, et al. China Petroleum Machinery, 2002(7), 1(in Chinese).
李明星, 王荣, 李鹏亮, 等. 石油机械, 2002(7), 1.
87 Jesus D, Abílio M P, Matos R, et al. Journal of Constructional Steel Research, 2012, 79, 140.
88 Li S M, Wu L F, Liu J H, et al. Journal of Aeronautical Materials, 2014, 34(3), 74(in Chinese).
李松梅, 吴凌飞, 刘建华, 等. 航空材料学报, 2014, 34(3), 74.
89 Guo Z Z, Ma Y F, Wang L, et al. Journal of Materials in Civil Engineering, 2020, 32, 04020115.
90 Zhang D Y, Li Z. Total Corrosion Control, 2019(3), 100(in Chinese).
张丹阳, 李臻. 全面腐蚀控制, 2019(3), 100.
91 Ma Y H, Zhang Z, Guo M Y, et al. Materials for Mechanical Engineering, 2021, 45(4), 65(in Chinese).
马颖涵, 张振, 郭孟雨, 等. 机械工程材料, 2021, 45(4), 65.
92 Knop M, Heath J, Sterjovski Z, et al. Procedia Engineering, 2010, 2, 1243.
93 Li M X, Yan F X, Lu M X. Journal of Mechanical Strength, 2004, 26(3), 313(in Chinese).
李明星, 闫凤霞, 路民旭. 机械强度, 2004, 26(3), 313.
94 Zhang G J, Pan Z G, Duan Z J, et al. Corrosion & Protection in Petrochemical Industry, 2001, 18(1), 53(in Chinese).
张国军, 潘治国, 段占军, 等. 石油化工腐蚀与防护, 2001, 18(1), 53.
95 Fassina P, Brunella F, Lazzari L, et al. Procedia Engineering, 2011, 10, 3345.
96 Adedipe O, Brennan F, Kolios A. Marine Structures, 2015, 42, 115.
97 Dhinakaran S, Raghu V, Prakash. Materials Science & Engineering A, 2014, 609, 204.
98 May M E, Saintier N, Devos O, et al. Corrosion Science, 2018, 133, 397.
99 Zhao J P, Zhou C Y, Yu X C, et al. Journal of Materials Engineering, 1999(6), 3(in Chinese).
赵建平, 周昌玉, 於孝春, 等. 材料工程, 1999(6), 3.
100 Li J, Wang Z F, Ke W. Acta Metallurgica Sinica, 1993(6), 82(in Chinese).
李劲, 王政富, 柯伟. 金属学报, 1993(6), 82.
101 Lu M X, Liu X K, Wang J J, et al. Acta Aeronautica ET Astronautica Sinica, 1993(1), 49(in Chinese).
路民旭, 刘晓坤, 王建军, 等. 航空学报, 1993(1), 49.
102 Liang Y M, Huang Y, Wu Z M. Corrosion & Protection, 2016, 37(4), 289(in Chinese).
梁永梅, 黄一, 吴智敏. 腐蚀与防护, 2016, 37(4), 289.
103 Igwemezie V, Mehmanparast A. International Journal of Fatigue, 2020, 134, 105484.
104 Fan Y, Su H Z, Chen K, et al. Corrosion & Protection, 2020, 41(7), 67(in Chinese).
范镒, 苏豪展, 陈凯, 等. 腐蚀与防护, 2020, 41(7), 67.
105 Igwemezie V, Dirisu P, Mehmanparast A. Materials Science & Engineering A, 2019, 754, 750.
106 Lorenzi S, Testa C, Cabrini M, et al. Key Engineering Materials, 2020, 4874, 294.
107 Zhong Y, Xiao F R, Shan Y Y, et al. Acta Metallurgica Sinica, 2005(5), 523(in Chinese).
钟勇, 肖福仁, 单以银, 等. 金属学报, 2005(5), 523.
108 Bach J, Möller J J, Göken M, et al. International Journal of Fatigue, 2016, 93, 281.
109 Chen D, Wu S Z, Chen H J, et al. Hot Working Technology, 2018, 47(16), 61(in Chinese).
陈丹, 吴素珍, 陈海军, 等. 热加工工艺, 2018, 47(16), 61.
110 Korda A A, Mutoh Y, Miyashita Y, et al. Scripta Materialia, 2006, 54, 1835.
111 Klapper H S, Menendez C, Jesse S. Corrosion, 2020, 76, 398.
112 Engler C T, Klapper H S, Oechsner M. Metals-Open Access Metallurgy Journal, 2021, 11, 117.
113 Wu Q G, Chen X D, Fan Z C, et al. Engineering Failure Analysis, 2017, 79, 422.
114 Wang H, Su B Y, Hua G R, et al. Hot Working Technology, 2016, 45(16), 48(in Chinese).
王恒, 苏波泳, 花国然, 等. 热加工工艺, 2016, 45(16), 48.
115 Li Q, Ye C, Zhou C Y, et al. Journal of Materials Engineering, 2000(2), 27(in Chinese).
李强, 业成, 周昌玉, 等. 材料工程, 2000(2), 27.
116 Chen X, Yang L, Dai H L, S et al. Engineering Failure Analysis, 2020, 113, 104556
117 Liu Q G, Guo Y S, Shen S M. Hebei Journal of Industrial Science & Technology, 2011, 28(5), 285(in Chinese).
刘庆刚, 郭彦书, 沈士明. 河北工业科技, 2011, 28(5), 285.
118 Wang L M, Zhong Y B, Zhu X M, et al. Journal of Chinese Society for Corrosion and Protection, 2005, 25(3), 167(in Chinese).
王雷明, 钟义兵, 朱小明, 等. 中国腐蚀与防护学报, 2005, 25(3), 167.
119 Perkins K M, Bache M R. International Journal of Fatigue, 2005, 27, 1499.
120 Xiao J, Xiao T, Zheng Y Q, et al. Journal of Nuclear Materials, 2020, 537, 152259.
121 Zhu Y F, Li Z L, Fan W L, et al. Journal of Building Structures, 2020, 41(8), 105(in Chinese).
祖云飞, 李正良, 范文亮, 等. 建筑结构学报, 2020, 41(8), 105.
122 Genel K, Demirkol M, Ürgen M. International Journal of Fatigue, 2002, 24, 537.
123 Wang J Q, Li J, Ke W. Corrosion Science and Protection Technology, 1997, 9(4), 30(in Chinese).
王俭秋, 李劲, 柯伟. 腐蚀科学与防护技术, 1997, 9(4), 30.
124 Zhang H X, Wang W W, Deng C L. Equipment Environmental Engineering, 2011, 8(2), 16(in Chinese).
张慧霞, 王伟伟, 邓春龙. 装备环境工程, 2011, 8(2), 16.
125 Jia L N, Jiao D W, Shangguan Y J, et al. Acoustics and Electronics Engineering, 2019(2), 46(in Chinese).
贾理男, 焦达文, 上官祎瑾, 等. 声学与电子工程, 2019(2), 46.
126 Chen Z R, Ma Q H. Research and Exploration in Laboratory, 2007(10), 276(in Chinese).
陈卓人, 马巧红. 实验室研究与探索, 2007(10), 276.
[1] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[2] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[3] 李爽, 张青松, 戴光泽. 预制裂纹对等离子体淬火车轮材料磨损行为的影响[J]. 材料导报, 2022, 36(5): 20120250-7.
[4] 陈亚军, 韦第升, 彭剑书, 宋先捷. 基于蚀坑形貌特征的2198-T8铝锂合金预腐蚀疲劳寿命预测[J]. 材料导报, 2022, 36(21): 21080028-7.
[5] 邹田春, 李龙辉, 巨乐章, 符记, 李晔. CFRP-铝合金板单、双搭接胶接接头刚度退化机理[J]. 材料导报, 2022, 36(19): 21050092-6.
[6] 高旭东, 邵永波, 郭永健, 钟颖, 罗霞飞. 应力比对服役后X56钢腐蚀疲劳裂纹扩展速率的影响[J]. 材料导报, 2022, 36(15): 21040303-6.
[7] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[8] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[9] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[10] 周峰峦, 王存宇, 曹文全, 董瀚. 冷轧中锰钢和等温淬火-碳配分钢裂纹扩展研究[J]. 材料导报, 2021, 35(8): 8164-8168.
[11] 喻宣瑞, 姚国文, 范伟庆. 交变荷载和氯盐环境作用下钢绞线的腐蚀疲劳性能研究[J]. 材料导报, 2021, 35(20): 20087-20091.
[12] 杨燕, 谭康豪, 覃英宏. 混凝土内氯离子扩散影响因素的研究综述[J]. 材料导报, 2021, 35(13): 13109-13118.
[13] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[14] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[15] 肖江, 周书葵, 刘星, 储陆平, 张建, 李智东, 田林玉, 李嘉丽. 层状双金属氢氧化物及其复合材料去除水体中重金属离子的研究进展[J]. 材料导报, 2020, 34(5): 5023-5031.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed