Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010079-5    
  金属与金属基复合材料 |
超亲水-空气疏油水下超疏油不锈钢网的制备及性能
李吉泰, 展悦, 冯明珠, 崔永岩
天津科技大学化工与材料学院,天津 300457
Preparation and Properties of Super Oil Repellent Stainless Steel Mesh Under Super Hydrophilic-Air Oil Repellent Condition
LI Jitai, ZHAN Yue, FENG Mingzhu, CUI Yongyan
School of Chemical Engineering and Materials, Tianjin University of Science and Technology, Tianjin 300457, China
下载:  全 文 ( PDF ) ( 6843KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着人类社会的进步与发展,工业上的石油泄漏以及含油废水的处理成为亟待解决的重要问题,网膜分离法因具有较高的分离效率且容易操作等优点逐渐成为新的研究热点。本工作将3-巯丙基三乙氧基硅烷(KH-580)和带阳离子的[2-(甲基丙烯酰氧基)乙基]三甲基氯化铵(DMC)通过点击反应和脱水缩合反应接枝在纳米二氧化硅(SiO2)上,并使其与带阴离子的全氟辛酸钠(PFOA-Na)反应,喷涂于不锈钢金属网上,制备成超亲水-空气疏油水下超疏油金属网。之后采用接触角测量仪、傅里叶红外光谱仪、扫描电子显微镜等对其进行了表征,并且考察了纳米二氧化硅的质量对水下接触角的影响。结果表明,纳米二氧化硅表面成功接枝了季胺阳离子,并且与全氟辛酸钠上的阴离子反应,而且超亲水-空气疏油水下超疏油金属网在空气中与水的接触角为0°,达到了超亲水状态,在空气中对食用油的接触角为120°。几种有机油的水下接触角大于150°,选择0.4 g作为合适的纳米二氧化硅质量,取得的水下接触角和孔径较优。超亲水-空气疏油水下超疏油金属网对实验的五种有机油的分离效率大于96.85%,测得五种有机油的最大分离通量为23 192 L/(m2·h),选择食用油作为研究对象,经过30次分离循环后分离效率也不低于95.65%,这表明超亲水-空气疏油水下超疏油金属网具有良好的稳定性和实用性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李吉泰
展悦
冯明珠
崔永岩
关键词:  超亲水  水下超疏油  油水分离  微纳米结构  纳米二氧化硅    
Abstract: The treatment of industrial oil leakage and oily wastewater has become an essential problem that must be tackled immediately, as human society have evolved and developed. With the benefits of high separation efficiency and ease of operation, the omentum separation method has become a new research focus. Click reaction and dehydration condensation reaction were used to graft 3-mercaptopropyl triethoxylsilane (KH-580) and cationic [2-(methylacryloxy) ethyl] trimethylammonium chloride (DMC) onto silica nanoparticles (SiO2), which then reacted with sodium perfluorooctanoate (PFOA-Na) with anion to prepare superhydrophilic air hydrophobic metal net, sprayed on stainless steel metal net. The contact angle measuring device, Fourier infrared spectrometer, scanning electron microscope, and other instruments were used to characterize it, and the influence of nano-silica quality on underwater contact angle was explored. The results demonstrated that quaternary amine cation was successfully grafted onto the surface of nano-silica, which then reacted with anion on sodium perfluorooctanoate. The superhydrophobic metal net's superhydrophilic contact angle with water in air was 0°, and the superhydrophobic metal net's contact angle with edible oil in air was 120°. 0.4 g was chosen as the appropriate nano-silica mass grade for numerous types of oil with underwater contact angles more than 150°, and the underwater contact angle and aperture were improved. Under the super-hydrophilic-air hydrophobic water, the separation efficiency of the five kinds of oil in the experiment is greater than 96.85%, and the maximum separation flux of the five kinds of oil is 23 192 L/(m2·h). The oil is chosen as the research item, and after 30 separation cycles, the separation efficiency is at least 95.65%. It is revealed that in superhydrophilic air and hydrophobic water, the superhydrophobic metal mesh is stable and practical.
Key words:  super hydrophilic    underwater super oil drainage    oil water separation    micro nano structure    nano silica
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TB34  
通讯作者:  cyy@tust.edu.cn   
作者简介:  李吉泰,2019年6月于安阳工学院获得工学学士学位,现为天津科技大学化工与材料学院硕士研究生,在崔永岩副教授的指导下进行研究,目前主要从事超亲水材料的合成及其性能研究。
崔永岩,天津科技大学化工与材料学院副教授,硕士研究生导师。1986年9月—1989年5月,天津轻工业学院高分子材料与工程专业硕士研究生;1989年5月—1997年7月,天津市合成材料研究所工作;从1997年7月至今,在天津科技大学任教,现任化工与材料学院党委书记,高分子合金及功能化团队负责人。研究方向为高分子材料改性及加工技术、聚合物共混与复合、橡塑复合加工技术、环境友好高分子材料。在《塑料工业》《塑料科技》等期刊发表论文。
引用本文:    
李吉泰, 展悦, 冯明珠, 崔永岩. 超亲水-空气疏油水下超疏油不锈钢网的制备及性能[J]. 材料导报, 2022, 36(Z1): 22010079-5.
LI Jitai, ZHAN Yue, FENG Mingzhu, CUI Yongyan. Preparation and Properties of Super Oil Repellent Stainless Steel Mesh Under Super Hydrophilic-Air Oil Repellent Condition. Materials Reports, 2022, 36(Z1): 22010079-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010079
1 曹思静, 潘子鹤, 杜志平,等. 化工进展, 2018, 37(10), 7.
2 Obaid M, Mohamed H O, Alayande A B, et al. Separation and Purification Technology, 2021, 272, 118954.
3 Li X, Shan H, Zhang W, et al. Separation and Purification Technology, 2019, 237(27),116324.
4 Xh A, Shu Z A, Wei X A, et al. Journal of Membrane Science, 2020,614(15),118500.
5 Zhou D L, Yang D, Han D, et al. Journal of Membrane Science, 2020, 620,118898.
6 Liu S Y, Zhang X X, Wang J T, et al. Surface and Coatings Technology, 2021,421, 127422.
7 Xie Y, Gu Y H, Meng J, et al. Journal of Hazardous Materials, 2020, 398,122862.
8 Dai J, Wang L, Wang Y, et al. ACS Applied Materials & Interfaces, 2020,12(4),4482.
9 Wen Q, Di J, Jiang L, et al. Chemical Science, 2013, 4(2),591.
10 Crick C R, Gibbins J A, Parkin I P. Journal of Materials Chemistry A, 2013, 1(19), 5943.
11 Lu Y, Sathasivam S, Song J, et al. Journal of Materials Chemistry A, 2014, 2(30),11628.
12 Nayak K, Kumar A, Tripathi B P . Journal of Membrane Science, 2022, 643, 120038.
13 贺赛环, 张富青, 凌宇杰,等. 化工新型材料, 2019(S1),5.
14 Zhao L, Du Z, Tai X, et al. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2021,623(24),126404.
15 Yang H, Pi P, Cai Z Q, et al. Applied Surface Science, 2010, 256(13), 4095.
16 徐兰芳,王锋,于英豪, 等.材料导报:综述篇,2020,34(9), 17105.
17 Gou X, Zhang Y, Long L, et al. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020, 605,125338.
18 Cao H J, Ying L. Journal of Colloid and Interface Science, 2021,598,483.
19 陈迪,黄杉,杨园园.复合材料学报, DOI:10.13801/j.cnki.fhclxb.20211025.001.
20 陈龙,代学玉,李德棂,等.山东化工,2021,50(9),49.
[1] 范雷倚, 王锐, 何睿杰, 张瑞阳, 张骞, 周莹. 聚合氯化铝原位改性聚氨酯泡沫用于油水分离[J]. 材料导报, 2022, 36(9): 21040138-7.
[2] 杨福生, 王百祥, 张妍, 任永忠, 陈永哲, 杨武. 纳米银协同沙子构筑超疏水表面及其性能研究[J]. 材料导报, 2022, 36(6): 21010001-5.
[3] 陈煜太, 黄威, 姜红, 李珊, 王元凤. 磺酸基与羧基修饰纳米二氧化硅:两种阴离子型纳米指纹显现材料的制备与应用[J]. 材料导报, 2022, 36(5): 21020127-7.
[4] 舒忠虎, 何建军, 段焱森, 罗金, 周承伟, 鲍江涌. 复合氟化改性制备EP-ZnO纳米超疏水涂层的研究[J]. 材料导报, 2021, 35(z2): 56-59.
[5] 成晨, 赵燕. 柴油乳化水分离材料的研究进展[J]. 材料导报, 2021, 35(Z1): 536-540.
[6] 余传明, 曾圣威, 刘叶原, 司徒紫晴, 刘可, 田丽芬, 罗文静, 梁远维, 李泳. 高内相乳液法制备P(St-DVB)多孔吸油材料及其在油水分离中的应用[J]. 材料导报, 2021, 35(4): 4200-4204.
[7] 杨福生, 张振宇, 李云清, 陈永哲, 任永忠, 马乐, 杨武. 层层自组装法制备超疏水/超亲油棉织物及其油水分离性能[J]. 材料导报, 2021, 35(12): 12190-12195.
[8] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[9] 杨福生, 张妍, 刘小斌, 陈永哲, 杨武. 种子生长法构筑超疏水-超亲油滤纸及其在油水分离中的应用[J]. 材料导报, 2020, 34(4): 4132-4136.
[10] 刘帅卓, 张颖, 范雷倚, 张骞, 周莹. 活性炭/聚四氟乙烯改性三聚氰胺海绵及其在油水分离中的应用[J]. 材料导报, 2020, 34(17): 17099-17104.
[11] 徐兰芳, 王锋, 于英豪, 涂伟萍. 超亲水/水下超疏油膜功能材料及其研究进展[J]. 材料导报, 2020, 34(17): 17105-17114.
[12] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[13] 高丰, 王会才, 任瑞丽. 超亲水-超疏油油水分离材料的研究进展[J]. 材料导报, 2020, 34(13): 13022-13027.
[14] 梁光兵, 李艳红, 张远琴, 訾昌毓, 赵文波, 张登峰. 磁响应吸油材料的研究进展[J]. 材料导报, 2019, 33(23): 3999-4007.
[15] 王茹,万芹,王高勇. 纳米二氧化硅对苯丙共聚物/水泥复合胶凝材料凝结硬化的影响[J]. 材料导报, 2019, 33(22): 3712-3719.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed