Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 22010033-9    
  金属与金属基复合材料 |
选区激光熔化金属零件后处理技术研究进展
于江1, 丁红瑜2, 耿遥祥1, 许俊华1, 宰春凤1
1 江苏科技大学材料科学与工程学院,江苏 镇江 212003
2 江苏科技大学海洋装备研究院,江苏 镇江 212003
Research Progress on Post-Processing of Metal Parts by Selective Laser Melting
YU Jiang1, DING Hongyu2, GENG Yaoxiang1, XU Junhua1, ZAI Chunfeng1
1 School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
2 Marine Equipment and Technology Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
下载:  全 文 ( PDF ) ( 12565KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 增材制造技术是近年来快速发展的一项先进制造技术,具有成形周期短,材料利用率高,无需模具,节约成本等优点。选区激光熔化(Selective laser melting, SLM)是增材制造工艺的一个重要分支,以激光为热源,通过粉末床熔融的方式实现中小型复杂精密金属结构件的快速成形。除模型设计,零件成形过程本身外,恰当的后处理工艺对于进一步优化组织结构,从而获得符合尺寸要求、表面光洁、力学性能达标的最终产品也十分重要。本文总结了国内外学者针对选区激光熔化零部件后处理方面的研究进展,重点论述了粉末清理与回收、热处理(退火、固溶时效、渗碳/渗氮处理)、热等静压、机械加工(电火花切割、支撑去除、铣削/磨削)、表面处理(喷砂、激光冲击强化、磨粒流)等方面,对改善零件性能,提升产品质量具有积极意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于江
丁红瑜
耿遥祥
许俊华
宰春凤
关键词:  增材制造  后处理  组织结构  力学性能    
Abstract: Additive manufacturing is a kind of advanced fabricating technology which developed very fast in recent years, it possesses advantages such as short processing procedures, high material utilization rate, no need for mold, cost-saving, and so on. Selective laser melting (SLM) is an important branch of the additive manufacturing process, it is based on the powder bed fusion technique which applies laser as heat source. SLM is capable to form medium and small size complex metal structures with high precision. In addition to structural design and powder bed fusion period, an appropriate post-treatment process is also very important for the final product, which requires fine microstructure, exact size, good surface finish, high mechanical property, and so on. This paper summarizes the research progress of state of the art on the post-treatment of SLM parts, including powder recycling and conditioning, heat treating (annealing, solution aging, carburizing/nitriding treatment), hot isostatic pres-sing, conventional machining (electrical discharge machining, support removal, milling/grinding), surface treatment (sand blasting, laser shot peening, abrasive flow) as well as other aspects. It may be helpful in improving product quality.
Key words:  additive manufacturing    post-treatment    microstructure structure    mechanical properties
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG146.2  
基金资助: 江苏省自然科学基金青年基金项目(BK20190979)
通讯作者:  yaoxianggeng@163.com   
作者简介:  于江,2017年于中国地质大学长城学院获得工学学士学位。现为江苏科技大学材料与工程学院专业硕士研究生,目前主要研究领域为选区激光熔化特种铝合金。
耿遥祥,江苏科技大学材料科学与工程学院副教授,硕士研究生导师。2016年获大连理工大学材料科学与工程学院材料科学博士学位。主要研究方向为选择性激光熔化用特种铝合金、非晶合金和纳米晶合金的成分设计和性能研究。
引用本文:    
于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
YU Jiang, DING Hongyu, GENG Yaoxiang, XU Junhua, ZAI Chunfeng. Research Progress on Post-Processing of Metal Parts by Selective Laser Melting. Materials Reports, 2022, 36(Z1): 22010033-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/22010033
1 柳朝阳, 赵备备, 李兰杰, 等. 粉末冶金工业, 2020, 30(2), 83.
2 辛艳喜,蔡高参,胡彪, 等. 精密成形工程, 2021, 13(6), 156.
3 李昕. 凿岩机械气动工具, 2014(4), 36.
4 曹澍, 何雪明, 颉芳霞, 等. 中国机械工程, 2021, 32(1), 54.
5 田杰, 黄正华, 戚文军, 等. 材料导报, 2017, 31(S1), 90.
6 黄建国, 任淑彬. 材料导报, 2021,35(23),23142.
7 万志远, 陈银平. 模具技术, 2020(1),59.
8 王同鹤. 选区激光熔化成型件后处理问题研究. 硕士学位论文, 浙江工业大学, 2017.
9 Yi F, Zhou Q, Wang C, et al.Journal of Materials Research and Techno-logy, 2021, 13,524.
10 耿遥祥, 唐浩, 罗金杰, 等. 稀有金属材料与工程, 2021, 50(3), 939.
11 朱成宝. 中国专利,CN107671287A, 2018.
12 王德伟, 任金茹, 陈立.中国专利,CN212551737U, 2021.
13 刘泽众, 杨东辉, 薛蕾, 等. 中国专利,CN205816336U, 2016.
14 陈金汉, 耿遥祥, 侯裕, 等. 稀有金属材料与工程, 2020, 49(11), 3882.
15 Hung W.Journal of Materials Engineering and Performance, 2021, 30(9), 6439.
16 杨永强, 王迪, 宋长辉. 金属3D打印技术. 华中科技大学出版社, 2020, pp. 154.
17 闫泰起, 唐鹏钧, 陈冰清, 等. 机械工程学报, 2020, 56(8), 37.
18 程志瑶, 沈显峰, 王国伟. 热加工工艺, 2022(2), 121.
19 Yue X Z, Fukazawa H, Maruyama K, et al. Materials Transactions, 2019, 60(1), 74.
20 Wen H, Wei, J.International Journal of Materials Research, 2018, 109(5), 437.
21 Tang H, Geng, Y X, Bian S N, et al. Acta Metallurgica Sinica (English Letters), 2022, 35(3), 466.
22 林泽桓, 李瑞迪, 祝弘滨, 等. 中南大学学报(自然科学版), 2020,51(11), 3055.
23 Jia Q B, Rometsch P, Cao S, et al. Scripta Materialia, 2018, 151, 42.
24 尚文静. 有色冶金设计与研究, 2010, 31(1), 18.
25 姜卓钰, 张朋, 包建文, 等. 宇航材料工艺, 2017, 47(1), 13.
26 Wang M B, Li R D, Yuan T C, et al. International Journal of Refractory Metals and Hard Materials, 2018, 70, 9.
27 Inmaculada L-G, Benjamin R, He J Y, et al. Additive Manufacturing, 2019, 30, 100874.
28 Jithin J, Peter H, Tom J, et al. Materials Science & Engineering, 2018, 733, 59.
29 Leuders S, Thoene M, Riemer A, et al. International Journal of Fatigue, 2013, 48(3), 300.
30 Araghchi M, Mansouri H, Vafaei R, et al.Materials Science and Engineering A, 2017, 689,48.
31 肖娜, 惠卫军, 张永健, 等. 金属学报, 2021, 57(8), 977.
32 Sugavaneswaran M, Kulkarni A. Tribology in Industry, 2019, 41(1), 33.
33 Yang W, He X, Li H, et al.Ceramics International, 2019, 46(3), 3043.
34 薄鑫涛. 热处理, 2020, 35(3), 41.
35 杨凤双, 林伟, 段景淞, 等. 机床与液压, 2021, 49(6), 27.
36 赵晓明, 李晓敏, 王佳骏, 等. 中国专利,CN201711145881.6, 2017.
37 Guo J, Goh M, Zhu Z, et al.Materials & Design, 2018, 153, 211.
38 陈超, 武姝婷, 丁红瑜, 等. 工具技术, 2019, 53(12), 56.
39 Kajima Y, Takaichi A, Nakamoto T, et al.Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 1.
40 Saigopal N, Morad B, Amir M, et al. Computer-Aided Design,2019, 115, 135.
41 Rotella G, Imbrogno S, Candamano S, et al.Journal of Materials Proces-sing Technology, 2018, 259, 180.
42 杜月欣. 仿生双曲面点阵结构选区激光熔化工艺参数及结构优化. 硕士学位论文, 南京航空航天大学, 2020.
43 Bagherifard S, Beretta N, Monti S, et al.Materials & Design, 2018, 145(5), 28.
44 Kapsa F P.Wear, 2001. 250(1-12), 624.
45 Maleki E, Unal O, Guagliano M, Bagherifard S. Materials Science & Engineering, 2021, 810, 141029.
46 Binnur S.Metals and Materials International, 2020, 26(3-4), 143.
47 Curtiss W. Shot Peener, 2018, 32(2), 6.
48 Hackel L, Rankin J R, Rubenchik A, et al. Additive Manufacturing, 2018, 24, 67.
49 Jinoop A N, Subbu S K, Paul C P, et al.International Journal of Precision Engineering and Manufacturing, 2019, 20(9), 1621.
50 吴嘉俊, 赵吉宾, 乔红超, 等. 光电工程, 2018, 45(2), 6.
51 杨启, 付雪松, 周文龙. 航空制造技术, 2020, 63(12), 14.
52 吕经康, 曹刚敏. 新技术新工艺, 2021(8), 1.
53 石岩, 简永超, 刘佳,等.中国专利, CN201811246385.4, 2019.
54 刘维伟, 吕谦, 雷力明, 等. 西北工业大学学报, 2021, 39(2), 334.
55 倪聪. 微流道换热器件激光选区熔化成型关键技术研究. 硕士学位论文, 长春理工大学, 2021.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
[8] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[9] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[10] 张静, 周婧, 段国林. 基于直写成型技术的多材料打印研究进展[J]. 材料导报, 2022, 36(8): 20080135-8.
[11] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[12] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[13] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[14] 杨浩, 李尧, 郝建民. 激光增材制造Inconel 718高温合金的研究进展[J]. 材料导报, 2022, 36(6): 20080021-10.
[15] 褚洪岩, 高李, 秦健健, 汤金辉, 蒋金洋. 磺化石墨烯对再生砂超高性能混凝土力学性能和耐久性能的影响[J]. 材料导报, 2022, 36(5): 20090345-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed