Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21120067-5    
  金属与金属基复合材料 |
温度对铝锂合金阳极氧化膜结构及耐蚀性的影响
陈小丽, 谭敏, 罗文东
重庆航天职业技术学院航空机电工程学院, 重庆 400021
Effect of Temperature on Film Structures and Corrosion Resistance of Aluminum-Lithium Alloy
CHEN Xiaoli, TAN Min, LUO Wendong
College of Aeronautical Mechanical and Electrical Engineering, Chongqing Aerospace Polytechnic, Chongqing 400021, China
下载:  全 文 ( PDF ) ( 6726KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 航空铝锂合金较传统铝合金具有密度低、比强度高、比刚度高等特点,被广泛用于航空领域,可提高飞机有效载荷和燃油效率。但铝锂合金在腐蚀环境中易发生局部腐蚀,需通过阳极氧化表面处理来提高其抗腐蚀能力。本工作重点研究了氧化温度对阳极氧化膜结构及耐蚀性的影响,并分别在22 ℃、27 ℃、32 ℃、37 ℃、42 ℃和47 ℃的酒石酸-硫酸溶液中阳极氧化2099铝锂合金获得了阳极氧化膜。采用场发射扫描电镜观察阳极氧化膜的显微形貌,通过电化学阻抗谱、中性盐雾试验研究该膜层的耐蚀性能。结果表明:随着阳极氧化电解液温度升高,阳极氧化膜的生长速率加快,厚度增大,膜孔隙率增加,当温度高于37 ℃时,在阳极氧化膜表面出现与T1相分布一致的棒状孔洞,表明T1相上形成的氧化膜更易发生溶解;酒石酸-硫酸阳极氧化(TSA)膜的耐蚀性能在试验温度范围内先增强后减弱。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈小丽
谭敏
罗文东
关键词:  铝锂合金  氧化温度  阳极氧化膜  耐蚀性    
Abstract: The aluminum-lithium (Al-Li) alloys for aviation are widely used in aerospace industry, due to their low density, high specific strength and specific stiffness, improving the pay load and fuel efficiency of the aircraft. However, the Al-Li alloys are susceptible to localized corrosion. In industry, the corrosion resistance of aluminum alloys is usually improved through anodizing treatments. This paper emphatically studied the influence of oxidation temperature on the structure and corrosion resistance of anodic oxidation film. The anodic oxidation film of 2099 aluminum-lit-hium was obtained by anodic oxidation in tartaric-sulfuric acid solution at 22 ℃, 27 ℃, 32 ℃, 37 ℃, 42 ℃ and 47 ℃, respectively. The morpholo-gy of the anodic films was examined using field emission gun scanning electron microscope (FEG-SEM). The corrosion resistance of the anodic films was investigated through electrochemical impedance spectroscopy (EIS) and neural salt spray test (NSST). The results show that, as anodizing temperature rises, the film growth rate and total film thickness increased,and the dissolution and film porosity increased, when the temperature is higher than 37 ℃, rod-shaped cavities with their distribution consistent with that of T1 phase appeared. The corrosion resistance of the TSA film generally increased firstly and then decreased in the range of test temperature.
Key words:  aluminum-lithium alloy    oxidation temperature    anodic oxidation film    corrosion resistance
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG178  
基金资助: 重庆市教育委员会高校科学技术研究项目(KJQN201903004)
通讯作者:  592829123@qq.com   
作者简介:  陈小丽,2016年6月毕业于重庆理工大学,获得硕士学位。现任职于重庆航天职业技术学院,从事航空材料表面处理、加工研究。
引用本文:    
陈小丽, 谭敏, 罗文东. 温度对铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 21120067-5.
CHEN Xiaoli, TAN Min, LUO Wendong. Effect of Temperature on Film Structures and Corrosion Resistance of Aluminum-Lithium Alloy. Materials Reports, 2022, 36(Z1): 21120067-5.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21120067
1 陈小丽, 麻彦龙, 黄伟九, 等.材料导报, 2015, 29(7), 107.
2 宋利康, 廖建华, 郑堂介,等.航空制造技术, 2015(4), 82.
3 Li J, Liu P, Chen Y, et al. Transactions of Nonferrous Metals Society of China, 2015, 25(7), 2103.
4 麻彦龙, 孟晓敏, 黄伟九,等.中国有色金属学报, 2015, 25(3), 611.
5 Arenas M A, De Damborenea J J. Surface and Coatings Technology, 2004, 187(2), 320.
6 刘建华, 李永星, 于美,等. 中国有色金属学报, 2012(1), 324.
7 Hakimizad A, Reisii K, Ashrafizadeh F. Surface and Coatings Technology, 2012, 206(8), 2438.
8 Du N, Wang S X , Zhao Q , et al. Transactions of Nonferrous Metals Society of China, 2012, 22(7), 1655.
9 Deng S, Xu L, Li Q Z, et al. Advanced Materials Research, 2012, 399, 95.
10 陈小丽. 铅锂合金酒石酸—硫酸阳极氧化膜的腐蚀行为及机理研究.硕士学位论文,重庆理工大学,2016.
11 Curioni M, Skeldon P, Thompson G E, et al. Advanced Materials Research, 2008, 38, 48.
12 Curioni M, Skeldon P, Thompson G E, et al. Journal of the Electrochemical Society, 2009, 156(4), C147.
13 吴双成.表面工程资讯, 2013, 13(5), 10.
14 王正曦. 5182 铝合金防腐表面处理研究.硕士学位论文,重庆理工大学, 2018.
15 Mubarok M Z, Wahyudi S. Journal of Minerals and Materials Characteri-zation and Engineering, 2015, 3(3), 154.
16 Ma Y, Zhou X, Thompson G E, et al. Journal of the Electrochemical Society, 2011, 158(2), C17.
17 Ma Y, Zhou X, Thompson G E, et al. Corrosion Science, 2011, 53(12), 4141.
18 Ma Y, Zhou X, Thompson G E, et al.Electrochimica Acta, 2012, 80, 148.
19 Zhang L, Thompson G E, Curioni M, et al. Journal of the Electrochemical Society, 2013, 160(4), C179.
20 Mazhar A A, Heakal F E T, Mogoda A S. Corrosion, 1988, 44(6), 354.
21 Ma Y, Zhou X, Thompson G E, et al. Corrosion Science, 2013, 66, 292.
22 Franco M, Anoop S, Uma R R, et al. ISRN Corrosion, DOI: 10.5402/2012/323676.
23 麻彦龙, 陈小丽, 易雅楠,等. 中国有色金属学报, 2016,26(10),2056.
24 Ma Y, Zhou X, Liao, et al. Journal of the Electrochemical Society, 2016163(7), C369.
[1] 陈小丽. 有机酸对新型铝锂合金阳极氧化膜结构及耐蚀性的影响[J]. 材料导报, 2022, 36(Z1): 22010030-5.
[2] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[3] 黄珂, 易幼平, 黄始全, 董非, 王晨光. 2195铝锂合金超低温流变行为及成形特性研究[J]. 材料导报, 2022, 36(3): 20090263-6.
[4] 仇伟夷, 祝祥辉, 黄伟九, 杨绪盛, 汪鑫. 晶界特征对AA2099铝锂合金疲劳加载分层断裂影响探究[J]. 材料导报, 2022, 36(10): 21030256-5.
[5] 杜宇航, 丁德渝, 郭宁, 郭胜锋. 高熵合金功能特性研究进展[J]. 材料导报, 2021, 35(17): 17051-17063.
[6] 曹苗, 谢发勤, 吴向清, 王少青, 鲁闯, 姚小飞. 无铬锌铝涂层的研究进展[J]. 材料导报, 2021, 35(13): 13128-13138.
[7] 曾尚武, 郭夏溦, 张磊, 屈帅, 常建伟, 王舒然, 徐德录, 李雅泊. 铁塔用VCI双金属涂层的制备及性能研究[J]. 材料导报, 2020, 34(Z2): 423-428.
[8] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[9] 赵静, 王天鹏, 张淮浩. 磁场作用下十二烷基苯磺酸钠对阳极铝箔的缓蚀性能及比电容的影响[J]. 材料导报, 2020, 34(6): 6156-6160.
[10] 余登德, 张仁耀, 沈月, 闻明, 刘洪喜1,. 混合表面纳米化制备钛表面Ru/Ti薄膜的结构及耐蚀性能[J]. 材料导报, 2020, 34(24): 24086-24091.
[11] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[12] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[13] 卢勇, 冯辉霞. 转化膜致密化及耐蚀性能提升工艺优化进展[J]. 材料导报, 2020, 34(13): 13160-13166.
[14] 周婉秋, 赵玉明, 刘晓安, 杨佳宇, 姜文印, 辛士刚, 康艳红. 1-乙基-3-甲基咪唑硫酸乙酯盐离子液体中采用电化学法合成聚苯胺薄膜及其耐蚀性[J]. 材料导报, 2020, 34(12): 12152-12157.
[15] 肖忆楠, 乔岩欣, 李月明, 盛立远, 赖琛, 奚廷斐. 医用钛及钛合金表面改性技术的研究进展[J]. 材料导报, 2019, 33(Z2): 336-342.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed