Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21100082-4    
  无机非金属及其复合材料 |
基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能
周万良, 邓欢
合肥工业大学土木与水利工程学院,土木工程结构与材料安徽省重点实验室,合肥 230009
Chloride Penetration Resistance of Functionally Graded Concrete Based on NaOH Activated Slag and Portland Cement
ZHOU Wanliang, DENG Huan
Anhui Key Laboratory of Civil Engineering Structures and Materials, College of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei 230009, China
下载:  全 文 ( PDF ) ( 2737KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 NaOH激发矿渣(NAS)具有好的抗氯离子渗透性能,而硅酸盐水泥(PC)的抗氯离子渗透性能却较差。在PC混凝土表面覆盖一层NAS砂浆能显著提高功能梯度混凝土(FGC)的抗氯离子渗透性能。浸泡在10%NaCl(质量分数,下同)溶液中84 d的FGC、NAS混凝土的氯离子渗透深度分别只有11.0 mm左右和12.7 mm,而PC混凝土的氯离子渗透深度则达到了36.7 mm。氮吸附试验表明,NAS砂浆中的孔体积和最可几孔径均大于PC砂浆。XRD试验结果表明,经10%NaCl溶液浸泡后,NAS砂浆和PC砂浆中都有Friedel盐生成。NAS砂浆抗氯离子渗透性能比PC砂浆好的原因是浆体对氯离子的物理吸附作用更大而不是孔径更细。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周万良
邓欢
关键词:  功能梯度混凝土(FGC)  NaOH激发矿渣(NAS)  硅酸盐水泥(PC)  抗氯离子渗透  孔径    
Abstract: NaOH activated slag (NAS) has excellent resistance to chloride ion penetration, while Portland cement (PC)has poor resistance to chloride ion penetration. Covering NAS mortar layer on the surface of PC concrete can significantly improve the chloride ion penetration resistance of functionally graded concrete (FGC). The chloride penetration depth of FGC and NAS concrete soaked in 10%NaCl (mass fraction, the same below) solution for 84 days are only about 11.0 mm and 12.7 mm respectively, while that of PC concrete is 36.7 mm. BET test shows that the vo-lume of pores and the most probable pore diameter in NAS mortar are much larger than that in PC mortar. XRD test results show that Friedel’s salt is formed in NAS mortar and PC mortar after soaking in 10%NaCl solution. The main reason why NAS mortar has better chloride penetration resistance than PC mortar is that the paste has greater physical adsorption on chloride ions rather than finer pore diameter.
Key words:  functionally graded concrete(FGC)    NaOH activated slag(NAS)    Portland cement(PC)    chloride penetration resistance    pore diameter
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU528.1  
通讯作者:  zhouwanliang@sohu.com   
作者简介:  周万良,合肥工业大学土木与水利工程学院副教授。2013年 6月毕业于武汉大学,获材料学博士学位。主要研究方向为高性能混凝土和混凝土材料的耐久性。
引用本文:    
周万良, 邓欢. 基于NaOH激发矿渣和硅酸盐水泥的功能梯度混凝土的抗氯离子渗透性能[J]. 材料导报, 2022, 36(Z1): 21100082-4.
ZHOU Wanliang, DENG Huan. Chloride Penetration Resistance of Functionally Graded Concrete Based on NaOH Activated Slag and Portland Cement. Materials Reports, 2022, 36(Z1): 21100082-4.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21100082
1 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2002, 32, 211.
2 Bakharev T, Sanjayan J G, Cheng Y B. Cement and Concrete Research, 2003, 33,1607.
3 Collins F G, Sanjayan J G. Cement and Concrete Research, 1999, 29, 455.
4 Sal O. Construction and Building Material, 2008, 22, 205.
5 Bakharev T, Sanjuyana J G. Cement Concrete Research, 2001, 31, 1277.
6 Wen X D, Jian L T, Wei Z G. Construction and Building Materials, 2013, 41, 246.
7 杨久俊, 徐鹏, 海然, 等. 建筑材料学报,2004, 7(3),323.
8 Dias C M R,Savastano J H, John V M. Construction and Building Mate-rials, 2010, 24, 140.
9 Cao Y Y Y, Li P P, Brouwers H J H, et al. Composites: Part B, 2019,171,154.
10 王信刚,马保国. 中国矿业大学学报, 2008, 37(3),354.
11 高英力,马保国,王信刚,等.岩石力学与工程学报, 2007, 26(11),2341.
12 夏江南,王海伟,邹本辉. 公路交通科技, 2019(1), 225.
13 向佳瑜,袁吉童,冷政,等. 混凝土与水泥制品, 2017(10), 14.
14 Shi C J. Cement and Concrete Research, 1996, 26 (12), 1789.
15 Ana María Aguirre Guerrero, Ruby Mejía De Gutiérrez. Construction and Building Materials, 2021, 268, 121098.
16 Mangat P S, Ojedokun O O. Construction and Building Materials, 2018, 188,337.
17 BirninYauri U A, Glasser F P. Cement and Concrete Research, 1998, 28, 1713.
18 Thomas M D A, Hooton R D, Scott A, et al. Cement and Concrete Research, 2012, 42,1.
19 Hirao H, Yamada K, Takahashi H, et al. Journal of Advanced Concrete Technology, 2005, 3,77.
20 勾密峰, 黄飞, 管学茂. 材料导报:研究篇, 2014, 28(5), 120.
21 万小梅, 刘国强, 赵铁军, 等. 建筑材料学报, 2019, 22(1), 31.
22 万小梅, 韩笑,于琦, 等.建筑材料学报, 2021, 24(5), 9.
23 Mangat P S, Olalekan O O. Construction and Building Materials, 2019, 212, 375.
24 Myers R J, Bernal S A, Provis J L. Cement and Concrete Research, 2017,95, 30.
25 Ye H, Radlińska A. Journal of Advanced Concrete Technology, 2016, 14, 245.
26 Ye H. Materials Characterization, 2018, 140, 95.
27 Kayali O, Khan M S H, Ahmed M S. Cement and Concrete Composite, 2012, 34, 936.
28 Kayali O, Ahmed M, Khan M. Civil Environment Research, 2013, 5,111.
[1] 周玥, 朱哲誉, 徐玲琳, 王中平, 周龙. 光镊技术进展及其在水泥基材料中的应用展望[J]. 材料导报, 2022, 36(8): 20070147-7.
[2] 于琦, 万小梅, 赵铁军, 王腾, 韩笑, 孙忠涛. 碱激发矿渣混凝土抗氯离子渗透性及电测试验方法研究[J]. 材料导报, 2022, 36(5): 20120067-6.
[3] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[4] 李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
[5] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[6] 卞立波, 陶志. 不同吸附性粉体对混凝土性能的影响[J]. 材料导报, 2020, 34(Z2): 246-249.
[7] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[8] 滕英跃, 候星成, 白雪, 刘全生, 李毅, 吴侃, 朱志成. 基于1H-NMR实验数据的三次样条插值函数模型对热解褐煤孔隙演化的研究[J]. 材料导报, 2020, 34(18): 18074-18080.
[9] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[10] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[11] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[12] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed